GaussianProcess
CalibrateEmulateSample.Emulators.GaussianProcessesPackage — Typeabstract type GaussianProcessesPackageType to dispatch which GP package to use:
GPJLfor GaussianProcesses.jl, [julia - gradient-free only]SKLJLfor the ScikitLearn GaussianProcessRegressor, [python - gradient-free]AGPJLfor AbstractGPs.jl, [julia - ForwardDiff compatible]
CalibrateEmulateSample.Emulators.PredictionType — Typeabstract type PredictionTypePredict type for GPJL in GaussianProcesses.jl:
YTypeFTypelatent function.
CalibrateEmulateSample.Emulators.GaussianProcess — Typestruct GaussianProcess{GPPackage, FT, VV<:(AbstractVector)} <: CalibrateEmulateSample.Emulators.MachineLearningToolStructure holding training input and the fitted Gaussian process regression models.
Fields
models::Vector{Union{Nothing, PyCall.PyObject, AbstractGPs.PosteriorGP, GaussianProcesses.GPE}}: The Gaussian Process (GP) Regression model(s) that are fitted to the given input-data pairs.kernel::Union{Nothing, var"#s6", var"#s5", var"#s1"} where {var"#s6"<:GaussianProcesses.Kernel, var"#s5"<:PyCall.PyObject, var"#s1"<:KernelFunctions.Kernel}: Kernel object.noise_learn::Bool: Learn the noise with the White Noise kernel explicitly?alg_reg_noise::Any: Additional observational or regularization noise in used in GP algorithmsprediction_type::CalibrateEmulateSample.Emulators.PredictionType: Prediction type (yto predict the data,fto predict the latent function).regularization::AbstractVector: Regularization vector for each output dimension (based on algregnoise
CalibrateEmulateSample.Emulators.GaussianProcess — MethodGaussianProcess(
package::AbstractFloat;
kernel,
noise_learn,
alg_reg_noise,
prediction_type
)
package- GaussianProcessPackage object.kernel- GaussianProcesses kernel object. Default is a Squared Exponential kernel.noise_learn- Boolean to additionally learn white noise in decorrelated space. Default is true.alg_reg_noise- Float to fix the (small) regularization parameter of algorithms whennoise_learn = trueprediction_type- PredictionType object. Default predicts data, not latent function (FType()).
CalibrateEmulateSample.Emulators.build_models! — Methodbuild_models!(
gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
input_output_pairs::EnsembleKalmanProcesses.DataContainers.PairedDataContainer{FT<:AbstractFloat},
input_structure_mats,
output_structure_mats;
kwargs...
) -> Any
Method to build Gaussian process models based on the package.
CalibrateEmulateSample.Emulators.optimize_hyperparameters! — Methodoptimize_hyperparameters!(
gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
args...;
kwargs...
)
Optimize Gaussian process hyperparameters using in-build package method.
Warning: if one uses GPJL() and wishes to modify positional arguments. The first positional argument must be the Optim method (default LBGFS()).
GaussianProcesses.predict — Methodpredict(
gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
new_inputs::AbstractArray{FT<:AbstractFloat, 2}
) -> Tuple{Any, Any}
Predict means and covariances in decorrelated output space using Gaussian process models.