GaussianProcess

CalibrateEmulateSample.Emulators.GaussianProcessType
struct GaussianProcess{GPPackage, FT} <: CalibrateEmulateSample.Emulators.MachineLearningTool

Structure holding training input and the fitted Gaussian process regression models.

Fields

  • models::Vector{Union{Nothing, PyCall.PyObject, GaussianProcesses.GPE}}: The Gaussian Process (GP) Regression model(s) that are fitted to the given input-data pairs.

  • kernel::Union{Nothing, var"#s16", var"#s17"} where {var"#s16"<:GaussianProcesses.Kernel, var"#s17"<:PyCall.PyObject}: Kernel object.

  • noise_learn::Bool: Learn the noise with the White Noise kernel explicitly?

  • alg_reg_noise::Any: Additional observational or regularization noise in used in GP algorithms

  • prediction_type::CalibrateEmulateSample.Emulators.PredictionType: Prediction type (y to predict the data, f to predict the latent function).

source
CalibrateEmulateSample.Emulators.GaussianProcessMethod
GaussianProcess(
    package::AbstractFloat;
    kernel,
    noise_learn,
    alg_reg_noise,
    prediction_type
)
  • package - GaussianProcessPackage object.
  • kernel - GaussianProcesses kernel object. Default is a Squared Exponential kernel.
  • noise_learn - Boolean to additionally learn white noise in decorrelated space. Default is true.
  • alg_reg_noise - Float to fix the (small) regularization parameter of algorithms when noise_learn = true
  • prediction_type - PredictionType object. Default predicts data, not latent function (FType()).
source
CalibrateEmulateSample.Emulators.build_models!Method
build_models!(
    gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
    input_output_pairs::EnsembleKalmanProcesses.DataContainers.PairedDataContainer{FT<:AbstractFloat}
)

Method to build Gaussian process models based on the package.

source
CalibrateEmulateSample.Emulators.optimize_hyperparameters!Method
optimize_hyperparameters!(
    gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
    args...;
    kwargs...
)

Optimize Gaussian process hyperparameters using in-build package method.

Warning: if one uses GPJL() and wishes to modify positional arguments. The first positional argument must be the Optim method (default LBGFS()).

source
GaussianProcesses.predictMethod
predict(
    gp::CalibrateEmulateSample.Emulators.GaussianProcess{CalibrateEmulateSample.Emulators.GPJL},
    new_inputs::AbstractArray{FT<:AbstractFloat, 2}
) -> Tuple{Any, Any}

Predict means and covariances in decorrelated output space using Gaussian process models.

source