API
Model Interface
ClimaCalibrate.forward_model — Functionforward_model(iteration, member)Execute the forward model simulation with the given configuration.
This function must be overridden by a component's model interface and should set things like the parameter path and other member-specific settings.
ClimaCalibrate.observation_map — Functionobservation_map(iteration)Runs the observation map for the specified iteration. This function must be implemented for each calibration experiment.
ClimaCalibrate.analyze_iteration — Functionanalyze_iteration(ekp, g_ensemble, prior, output_dir, iteration)After updating the ensemble and before starting the next iteration, analyze_iteration is evaluated.
This function is optional to implement.
For example, one may want to print information from the eki object or plot g_ensemble.
ClimaCalibrate.postprocess_g_ensemble — Functionpostprocess_g_ensemble(ekp, g_ensemble, prior, output_dir, iteration)Postprocess g_ensemble after evaluating the observation map and before updating the ensemble.
Worker Interface
ClimaCalibrate.add_workers — Functionadd_workers(
nworkers;
device = :gpu,
cluster = :auto,
time = DEFAULT_WALLTIME,
kwargs...
)Add nworkers worker processes to the current Julia session, automatically detecting and configuring for the available computing environment.
Arguments
nworkers::Int: The number of worker processes to add.device::Symbol = :gpu: The target compute device type, either:gpu(1 GPU, 4 CPU cores) or:cpu(1 CPU core).cluster::Symbol = :auto: The cluster management system to use. Options::auto: Auto-detect available cluster environment (SLURM, PBS, or local):slurm: Force use of SLURM scheduler:pbs: Force use of PBS scheduler:local: Force use of local processing (standardaddprocs)
time::Int = DEFAULT_WALLTIME: Walltime in minutes, will be formatted appropriately for the cluster systemkwargs: Other kwargs can be passed directly through toaddprocs.
ClimaCalibrate.WorkerBackend — TypeWorkerBackendUsed to run calibrations on Distributed.jl's workers. For use on a Slurm cluster, see SlurmManager.
Keyword Arguments for WorkerBackend
failure_rate::Float64: The threshold for the percentage of workers that can fail before an iteration is stopped. The default is 0.5.worker_pool: A worker pool created from the workers available.
ClimaCalibrate.SlurmManager — TypeSlurmManager(ntasks=get(ENV, "SLURM_NTASKS", 1))The ClusterManager for Slurm clusters, taking in the number of tasks to request with srun.
To execute the srun command, run addprocs(SlurmManager(ntasks))
Keyword arguments can be passed to srun: addprocs(SlurmManager(ntasks), gpus_per_task=1)
By default the workers will inherit the running Julia environment.
To run a calibration, call calibrate(WorkerBackend(), ...)
To run functions on a worker, call remotecall(func, worker_id, args...)
ClimaCalibrate.PBSManager — TypePBSManager(ntasks)The ClusterManager for PBS/Torque clusters, taking in the number of tasks to request with qsub.
To execute the qsub command, run addprocs(PBSManager(ntasks)). Unlike the SlurmManager, this will not nest scheduled jobs, but will acquire new resources.
Keyword arguments can be passed to qsub: addprocs(PBSManager(ntasks), nodes=2)
By default, the workers will inherit the running Julia environment.
To run a calibration, call calibrate(WorkerBackend(), ...)
To run functions on a worker, call remotecall(func, worker_id, args...)
ClimaCalibrate.set_worker_loggers — Functionset_worker_loggers(workers = workers())Set the global logger to a simple file logger for the given workers.
ClimaCalibrate.map_remotecall_fetch — Functionmap_remotecall_fetch(f::Function, args...; workers = workers())Call function f from each worker and wait for the results to return.
ClimaCalibrate.foreach_remotecall_wait — Functionforeach_remotecall_wait(f::Function, args...; workers = workers())Call function f from each worker.
Backend Interface
ClimaCalibrate.calibrate — Functioncalibrate(
ensemble_size::Int,
n_iterations::Int,
observations,
noise,
prior,
output_dir;
backend_kwargs::NamedTuple,
ekp_kwargs...,
)Run a calibration using a backend constructed from backend_kwargs and a EKP.EnsembleKalmanProcess constructed from ekp_kwargs.
See the backend's documentation for the available keyword arguments.
calibrate(backend, ekp::EnsembleKalmanProcess, ensemble_size, n_iterations, prior, output_dir)
calibrate(backend, ensemble_size, n_iterations, observations, noise, prior, output_dir; ekp_kwargs...)Run a full calibration on the given backend.
If the EKP struct is not given, it will be constructed upon initialization. While EKP keyword arguments are passed through to the EKP constructor, if using many keywords it is recommended to construct the EKP object and pass it into calibrate.
Available Backends: WorkerBackend, CaltechHPCBackend, ClimaGPUBackend, DerechoBackend, JuliaBackend.
Derecho, ClimaGPU, and CaltechHPC backends are designed to run on a specific high-performance computing cluster. WorkerBackend uses Distributed.jl to run the forward model on workers.
ClimaCalibrate.JuliaBackend — TypeJuliaBackendThe simplest backend, used to run a calibration in Julia without any parallelization.
ClimaCalibrate.HPCBackend — TypeHPCBackend <: AbstractBackendAll concrete types of HPCBackend share the same keyword arguments for the constructors.
Keyword Arguments for HPC backends
hpc_kwargs::Dict{Symbol, String}: Dictionary of arguments passed to the job scheduler (e.g., Slurm or PBS). You may find the functionkwargshelpful to constructhpc_kwargs.verbose::Bool: Enable verbose logging output. The default isfalse.experiment_dir::String: Directory containing the experiment's Project.toml file. The default is the current project directory.model_interface::String: Absolute path to the model interface file that defines how to run the forward model. The default isabspath(joinpath(project_dir(), "..", "..", "model_interface.jl")).
ClimaCalibrate.DerechoBackend — TypeDerechoBackendUsed for NSF NCAR's Derecho supercomputing system.
See HPCBackend for the keyword arguments to construct a DerechoBackend.
ClimaCalibrate.CaltechHPCBackend — TypeCaltechHPCBackendUsed for Caltech's high-performance computing cluster.
See HPCBackend for the keyword arguments to construct a CaltechHPCBackend.
ClimaCalibrate.ClimaGPUBackend — TypeClimaGPUBackendUsed for CliMA's private GPU server.
See HPCBackend for the keyword arguments to construct a ClimaGPUBackend.
ClimaCalibrate.GCPBackend — TypeGCPBackendUsed for CliMA's private GPU server.
See HPCBackend for the keyword arguments to construct a GCPBackend.
ClimaCalibrate.get_backend — Functionget_backend()Get ideal backend for deploying forward model runs. Each backend is found via gethostname(). Defaults to JuliaBackend if none is found.
ClimaCalibrate.model_run — Functionmodel_run(backend, iter, member, output_dir, project_dir, module_load_str; exeflags)Construct and execute a command to run a single forward model on a given job scheduler.
Uses the given backend to run slurm_model_run or pbs_model_run.
Arguments:
iter: Iteration numbermember: Member numberoutput_dir: Calibration experiment output directoryproject_dir: Directory containing the experiment's Project.tomlmodule_load_str: Commands which load the necessary modules
ClimaCalibrate.module_load_string — Functionmodule_load_string(backend)Return a string that loads the correct modules for a given backend when executed via bash.
Job Scheduler
ClimaCalibrate.wait_for_jobs — Functionwait_for_jobs(jobids, output_dir, iter, experiment_dir, model_interface, module_load_str, model_run_func; verbose, hpc_kwargs, reruns=1)Wait for a set of jobs to complete. If a job fails, it will be rerun up to reruns times.
This function monitors the status of multiple jobs and handles failures by rerunning the failed jobs up to the specified number of reruns. It logs errors and job completion status, ensuring all jobs are completed before proceeding.
Arguments:
jobids: Vector of job IDs.output_dir: Directory for output.iter: Iteration number.experiment_dir: Directory for the experiment.model_interface: Interface to the model.module_load_str: Commands to load necessary modules.model_run_func: Function to run the model.verbose: Print detailed logs if true.hpc_kwargs: HPC job parameters.reruns: Number of times to rerun failed jobs.
ClimaCalibrate.log_member_error — Functionlog_member_error(output_dir, iteration, member, verbose=false)Log a warning message when an error occurs. If verbose, includes the ensemble member's output.
ClimaCalibrate.kill_job — Functionkill_job(jobid::SlurmJobID)
kill_job(jobid::PBSJobID)End a running job, catching errors in case the job can not be ended.
ClimaCalibrate.job_status — Functionjob_status(job_id)Parse the slurm job_id's state and return one of three status symbols: :PENDING, :RUNNING, or :COMPLETED.
ClimaCalibrate.kwargs — Functionkwargs(; kwargs...)Create a dictionary from keyword arguments.
ClimaCalibrate.slurm_model_run — Functionslurm_model_run(iter, member, output_dir, experiment_dir, model_interface, module_load_str; hpc_kwargs)Construct and execute a command to run a single forward model on Slurm. Helper function for model_run.
ClimaCalibrate.generate_sbatch_script — Functiongenerate_sbatch_script(iter, member, output_dir, experiment_dir, model_interface; module_load_str, hpc_kwargs, exeflags="")Generate a string containing an sbatch script to run the forward model. hpc_kwargs is turned into a series of sbatch directives using generate_sbatch_directives. module_load_str is used to load the necessary modules and can be obtained via module_load_string. exeflags is a string of flags to pass to the Julia executable (defaults to empty string).
ClimaCalibrate.generate_sbatch_directives — Functiongenerate_sbatch_directives(hpc_kwargs)Generate Slurm sbatch directives from HPC kwargs.
ClimaCalibrate.submit_slurm_job — Functionsubmit_slurm_job(sbatch_filepath; env=deepcopy(ENV))Submit a job to the Slurm scheduler using sbatch, removing unwanted environment variables.
Unset variables: "SLURMMEMPERCPU", "SLURMMEMPERGPU", "SLURMMEMPER_NODE"
ClimaCalibrate.pbs_model_run — Functionpbs_model_run(iter, member, output_dir, experiment_dir, model_interface, module_load_str; hpc_kwargs)Construct and execute a command to run a single forward model on PBS Pro. Helper function for model_run.
ClimaCalibrate.generate_pbs_script — Functiongeneratepbsscript( iter, member, outputdir, experimentdir, modelinterface; moduleloadstr, hpckwargs, )
Generate a string containing a PBS script to run the forward model.
Returns:
qsub_contents::Function: A function generating the content of the PBS script based on the provided arguments. This will run the contents of thejulia_script, which have to be run from a file due to Derecho'sset_gpu_rank.julia_script::String: The Julia script string to be executed by the PBS job.
Helper function for pbs_model_run.
ClimaCalibrate.submit_pbs_job — Functionsubmit_pbs_job(sbatch_filepath; env=deepcopy(ENV))Submit a job to the PBS Pro scheduler using qsub, removing unwanted environment variables.
Unset variables: "PBSMEMPERCPU", "PBSMEMPERGPU", "PBSMEMPER_NODE", "PYTHONHOME", "PYTHONPATH", "PYTHONUSERBASE"
EnsembleKalmanProcesses Interface
ClimaCalibrate.initialize — Functioninitialize(eki::EKP.EnsembleKalmanProcess, prior, output_dir)
initialize(ensemble_size, observations, noise, prior, output_dir)Initialize a calibration, saving the initial parameter ensemble to a folder within output_dir.
If no EKP struct is given, construct an EKP struct and return it.
ClimaCalibrate.save_G_ensemble — Functionsave_G_ensemble(output_dir::AbstractString, iteration, G_ensemble)Saves the ensemble's observation map output to the correct directory based on the provided configuration. Takes an output directory, iteration number, and the ensemble output to save.
ClimaCalibrate.update_ensemble — Functionupdate_ensemble(output_dir::AbstractString, iteration, prior)Updates the EnsembleKalmanProcess object and saves the parameters for the next iteration.
ClimaCalibrate.update_ensemble! — Functionupdate_ensemble!(ekp, G_ens, output_dir, iteration, prior)Updates an EKP object with data G_ens, saving the object and final parameters to disk.
ClimaCalibrate.observation_map_and_update! — Functionobservation_map_and_update!(ekp, output_dir, iteration, prior)Compute the observation map and update the given EKP object.
ClimaCalibrate.get_prior — Functionget_prior(param_dict::AbstractDict; names = nothing)
get_prior(prior_path::AbstractString; names = nothing)Constructs the combined prior distribution from a param_dict or a TOML configuration file specified by prior_path. If names is provided, only those parameters are used.
ClimaCalibrate.get_param_dict — Functionget_param_dict(distribution; names)Generates a dictionary for parameters based on the specified distribution, assumed to be of floating-point type. If names is not provided, the distribution's names will be used.
ClimaCalibrate.path_to_iteration — Functionpath_to_iteration(output_dir, iteration)Return the path to the directory for a given iteration within the specified output directory.
ClimaCalibrate.path_to_ensemble_member — Functionpath_to_ensemble_member(output_dir, iteration, member)Return the path to an ensemble member's directory for a given iteration and member number.
ClimaCalibrate.path_to_model_log — Functionpath_to_model_log(output_dir, iteration, member)Return the path to an ensemble member's forward model log for a given iteration and member number.
ClimaCalibrate.parameter_path — Functionparameter_path(output_dir, iteration, member)Return the path to an ensemble member's parameter file.
ClimaCalibrate.minibatcher_over_samples — Functionminibatcher_over_samples(n_samples, batch_size)Create a FixedMinibatcher that divides n_samples into batches of size batch_size.
If n_samples is not divisible by batch_size, the remaining samples will be dropped.
minibatcher_over_samples(samples, batch_size)Create a FixedMinibatcher that divides a vector of samples into batches of size batch_size.
If the number of samples is not divisible by batch_size, the remaining samples will be dropped.
ClimaCalibrate.observation_series_from_samples — Functionobservation_series_from_samples(samples, batch_size, names = nothing)Create an EKP.ObservationSeries from a vector of EKP.Observation samples.
If the number of samples is not divisible by batch_size, the remaining samples will be dropped.
ClimaCalibrate.load_latest_ekp — Functionload_latest_ekp(output_dir)Return the most recent EnsembleKalmanProcess struct from the given output directory.
Returns nothing if no EKP structs are found.
Observation Recipe Interface
ClimaCalibrate.ObservationRecipe.AbstractCovarianceEstimator — Typeabstract type AbstractCovarianceEstimator endAn object that estimates the noise covariance matrix from observational data that is appropriate for a sample between start_date and end_date.
AbstractCovarianceEstimator have to provide one function, ObservationRecipe.covariance.
The function has to have the signature
ObservationRecipe.covariance(
covar_estimator::AbstractCovarianceEstimator,
vars,
start_date,
end_date,
)and return a noise covariance matrix.
ClimaCalibrate.ObservationRecipe.ScalarCovariance — TypeScalarCovariance <: AbstractCovarianceEstimatorContain the necessary information to construct the scalar covariance matrix.
ClimaCalibrate.ObservationRecipe.ScalarCovariance — MethodScalarCovariance(;
scalar = 1.0,
use_latitude_weights = false,
min_cosd_lat = 0.1,
)Create a ScalarCovariance which specifies how the covariance matrix should be formed. When used with ObservationRecipe.observation or ObservationRecipe.covariance, return a Diagonal matrix.
Keyword arguments
scalar: Scalar value to multiply the identity matrix by.use_latitude_weights: Iftrue, then latitude weighting is applied to the covariance matrix. Latitude weighting is multiplying the values along the diagonal of the covariance matrix by(1 / max(cosd(lat), min_cosd_lat)). See the keyword argumentmin_cosd_latfor more information.min_cosd_lat: Control the minimum latitude weight whenuse_latitude_weightsistrue. The value formin_cosd_latmust be greater than zero as values close to zero along the diagonal of the covariance matrix can lead to issues when taking the inverse of the covariance matrix.
ClimaCalibrate.ObservationRecipe.SeasonalDiagonalCovariance — TypeSeasonalDiagonalCovariance <: AbstractCovarianceEstimatorContain the necessary information to construct a diagonal covariance matrix whose entries represents seasonal covariances from ClimaAnalysis.OutputVars.
ClimaCalibrate.ObservationRecipe.SeasonalDiagonalCovariance — MethodSeasonalDiagonalCovariance(model_error_scale = 0.0,
regularization = 0.0,
ignore_nan = true,
use_latitude_weights = false,
min_cosd_lat = 0.1)Create a SeasonalDiagonalCovariance which specifies how the covariance matrix should be formed. When used with ObservationRecipe.observation or ObservationRecipe.covariance, return a Diagonal matrix.
Keyword arguments
model_error_scale: Noise from the model error added to the covariance matrix. This is(model_error_scale * seasonal_mean).^2, whereseasonal_meanis the seasonal mean for each of the quantity for each of the season (DJF, MAM, JJA, SON).regularization: A diagonal matrix of the formregularization * Iis added to the covariance matrix.ignore_nan: Iftrue, thenNaNs are ignored when computing the covariance matrix. Otherwise,NaNare included in the intermediate calculation of the covariance matrix. Note that allNaNs are removed in the last step of forming the covariance matrix even ifignore_nanisfalse.use_latitude_weights: Iftrue, then latitude weighting is applied to the covariance matrix. Latitude weighting is multiplying the values along the diagonal of the covariance matrix by(1 / max(cosd(lat), min_cosd_lat)). See the keyword argumentmin_cosd_latfor more information.min_cosd_lat: Control the minimum latitude weight whenuse_latitude_weightsistrue. The value formin_cosd_latmust be greater than zero as values close to zero along the diagonal of the covariance matrix can lead to issues when taking the inverse of the covariance matrix.
ClimaCalibrate.ObservationRecipe.SVDplusDCovariance — TypeSVDplusDCovariance <: AbstractCovarianceEstimatorContain the necessary information to construct a EKP.SVDplusD covariance matrix from ClimaAnalysis.OutputVars.
ClimaCalibrate.ObservationRecipe.SVDplusDCovariance — MethodSVDplusDCovariance(sample_date_ranges;
model_error_scale = 0.0,
regularization = 0.0,
use_latitude_weights = false,
min_cosd_lat = 0.1)Create a SVDplusDCovariance which specifies how the covariance matrix should be formed. When used with ObservationRecipe.observation or ObservationRecipe.covariance, return a EKP.SVDplusD covariance matrix.
For sample_date_ranges, it is recommended that each sample contains data from a single year. For example, if the samples are created from time series data of seasonal averages, then each sample should contain all four seasons. Otherwise, the covariance matrix may not make sense. For example, if each sample contains two years of seasonally averaged data, then the sample mean is the seasonal mean of every other season across the years stacked vertically. For a concrete example, if the sample contain DJF for both 2010 and 2011. Then, the sample mean will be of mean of DJF 2010, 2012, and so on, and the mean of DJF 2011, 2013, and so on. As a result, if one were to use this covariance matrix with model_error_scale, the covariance matrix will not make sense.
Positional arguments
sample_date_ranges: The start and end dates of each samples. This is used to determine the sample from the time series data of theOutputVars. These dates must be present in all theOutputVars.
Keyword arguments
model_error_scale: Noise from the model error added to the covariance matrix. This is(model_error_scale * mean(samples, dims = 2)).^2, wheremean(samples, dims = 2)is the mean of the samples.regularization: A diagonal matrix of the formregularization * Iis added to the covariance matrix.use_latitude_weights: Iftrue, then latitude weighting is applied to the covariance matrix. Latitude weighting is multiplying the columns of the matrix of samples by1 / sqrt(max(cosd(lat), 0.1)). See the keyword argumentmin_cosd_latfor more information.min_cosd_lat: Control the minimum latitude weight whenuse_latitude_weightsistrue. The value formin_cosd_latmust be greater than zero as values close to zero along the diagonal of the covariance matrix can lead to issues when taking the inverse of the covariance matrix.
ClimaCalibrate.ObservationRecipe.covariance — Functioncovariance(covar_estimator::ScalarCovariance,
vars::Union{OutputVar, Iterable{OutputVar}},
start_date,
end_date)Compute the scalar covariance matrix.
Data from vars will not be used to compute the covariance matrix.
covariance(covar_estimator::SeasonalDiagonalCovariance,
vars::Union{OutputVar, Iterable{OutputVar}},
start_date,
end_date)Compute the noise covariance matrix of seasonal quantities from var that is appropriate for a sample of seasonal quantities across time for seasons between start_date and end_date.
The diagonal is computed from the variances of the seasonal quantities.
covariance(covar_estimator::SVDplusDCovariance,
vars::Union{OutputVar, Iterable{OutputVar}},
start_date,
end_date)Compute the EKP.SVDplusD covariance matrix appropriate for a sample with times between start_date and end_date.
ClimaCalibrate.ObservationRecipe.observation — Functionobservation(covar_estimator::AbstractCovarianceEstimator,
vars,
start_date,
end_date;
name = nothing)Return an EKP.Observation with a sample between the dates start_date and end_date, a covariance matrix defined by covar_estimator, name determined from the short names of vars, and metadata.
ClimaCalibrate.ObservationRecipe.short_names — Functionshort_names(obs::EKP.Observation)Get the short names of the variables from the metadata in the EKP.Observation.
If the short name is not available, then nothing is returned instead.
ClimaCalibrate.ObservationRecipe.get_observations_for_nth_iteration — Functionget_observations_for_nth_iteration(obs_series, N)For the Nth iteration, get the observation(s) being processed.
ClimaCalibrate.ObservationRecipe.get_metadata_for_nth_iteration — Functionget_metadata_for_nth_iteration(obs_series, N)For the Nth iteration, get the metadata of the observation(s) being processed.
ClimaCalibrate.ObservationRecipe.reconstruct_g_mean_final — Functionreconstruct_g_mean_final(ekp::EKP.EnsembleKalmanProcess)Reconstruct the mean forward model evaluation at the last iteration as a vector of OutputVars.
ClimaCalibrate.ObservationRecipe.reconstruct_diag_cov — Functionreconstruct_diag_cov(obs::EKP.Observation)Reconstruct the diagonal of the covariance matrix in obs as a vector of OutputVars.
This function only supports observations that contain diagonal covariance matrices.
ClimaCalibrate.ObservationRecipe.reconstruct_vars — Functionreconstruct_vars(obs::EKP.Observation)Reconstruct the OutputVars from the samples in obs.
ClimaCalibrate.ObservationRecipe.seasonally_aligned_yearly_sample_date_ranges — Functionseasonally_aligned_yearly_sample_date_ranges(var::OutputVar)Generate sample dates that conform to a seasonally aligned year from dates(var).
A seasonally aligned year is defined to be from December to November of the following year.
This function is useful for finding the sample dates of samples consisting of all four seasons in a single year. For example, one can use this function to find the sample_date_ranges when constructing SVDplusDCovariance.
ClimaCalibrate.ObservationRecipe.change_data_type — FunctionObservationRecipe.change_data_type(var::OutputVar, data_type)Return a OutputVar with data of type data_type.
This is useful if you want to make covariance matrix whose element type is data_type.
Ensemble Builder Interface
ClimaAnalysisExt.GEnsembleBuilder — TypeGEnsembleBuilder{FT <: AbstractFloat}An object to help build G ensemble matrix by using the metadata stored in the EKP.EnsembleKalmanProcess object. Metadata must come from ClimaAnalysis.
GEnsembleBuilder takes in preprocessed OutputVars and automatically construct the corresponding G ensemble matrix for the current iteration of the calibration.
ClimaCalibrate.EnsembleBuilder.GEnsembleBuilder — FunctionGEnsembleBuilder(ekp::EKP.EnsembleKalmanProcess{FT})
where {FT <: AbstractFloat}Construct a GEnsembleBuilder where the element type of the G ensemble matrix is FT.
ClimaCalibrate.EnsembleBuilder.fill_g_ens_col! — FunctionEnsembleBuilder.fill_g_ens_col!(g_ens_builder::GEnsembleBuilder,
col_idx,
var::OutputVar;
checkers = (),
verbose = false)Fill the col_idxth of the G ensemble matrix from the OutputVar var and ekp. If it was successful, return true, otherwise, return false.
It is assumed that the times or dates of a single OutputVar is a superset of the times or dates of one or more metadata in the minibatch.
This function relies on the short names in the metadata. This function will not behave correctly if the short names are mislabled or not present.
Furthermore, this function assumes that all observations are generated using ObservationRecipe.Observation which guarantees that the metadata exists and the correct placement of metadata.
EnsembleBuilder.fill_g_ens_col!(g_ens_builder::GEnsembleBuilder,
col_idx,
val::AbstractFloat)Fill the col_idxth column of the G ensemble matrix with val.
This returns true.
This is useful if you want to completely fill a column of a G ensemble matrix with NaNs if a simulation crashed.
ClimaCalibrate.EnsembleBuilder.is_complete — FunctionEnsembleBuilder.is_complete(g_ens_builder::GEnsembleBuilder)Return true if all the entries of the G ensemble matrix is filled out and false otherwise.
ClimaCalibrate.EnsembleBuilder.get_g_ensemble — FunctionEnsembleBuilder.get_g_ensemble(g_ens_builder::GEnsembleBuilder)Return the G ensemble matrix from g_ens_builder.
This function does not check that the G ensemble matrix is completed. See ClimaCalibrate.EnsembleBuilder.is_complete to check if the G ensemble matrix is completely filled out.
ClimaCalibrate.EnsembleBuilder.ranges_by_short_name — Functionranges_by_short_name(g_ens_builder::GEnsembleBuilder, short_name)Return a vector of ranges for the G ensemble matrix that correspond with the short name.
ClimaCalibrate.EnsembleBuilder.metadata_by_short_name — Functionmetadata_by_short_name(g_ens_builder::GEnsembleBuilder, short_name)Return a vector of metadata that correspond with short_name.
ClimaCalibrate.EnsembleBuilder.missing_short_names — Functionmissing_short_names(g_ens_builder::GEnsembleBuilder, col_idx)Return a set of the short names of the metadata that are not filled out for the col_idxth column of g_ens_builder.
Checker Interface
ClimaCalibrate.Checker.AbstractChecker — Typeabstract type AbstractChecker endAn object that performs validation checks between the simulation data and metadata from observational data. This is used by GEnsembleBuilder to validate OutputVars from simulation data against the Metadata in the observations in the EnsembleKalmanProcess object.
An AbstractChecker must implement the Checker.check function.
The function must have the signature:
import ClimaCalibrate.Checker
Checker.check(::YourChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false)and return true or false.
For more information about OutputVar and Metadata, see the ClimaAnalysis documentation.
ClimaCalibrate.Checker.ShortNameChecker — Typestruct ShortNameChecker <: AbstractChecker endA struct that checks the short name between simulation data and metadata.
ClimaCalibrate.Checker.DimNameChecker — Typestruct DimNameChecker <: AbstractChecker endA struct that checks the dimension names between simulation data and metadata.
ClimaCalibrate.Checker.DimUnitsChecker — Typestruct DimUnitsChecker <: AbstractChecker endA struct that checks the units of the dimensions between simulation data and metadata.
ClimaCalibrate.Checker.UnitsChecker — Typestruct UnitsChecker <: AbstractChecker endA struct that checks the units between the simulation data and metadata.
ClimaCalibrate.Checker.DimValuesChecker — Typestruct DimValuesChecker <: AbstractChecker endA struct that checks the values of the dimensions between the simulation data and metadata.
ClimaCalibrate.Checker.SequentialIndicesChecker — Typestruct SequentialIndicesChecker <: AbstractChecker endA struct that checks that the indices of the dates of the simulation data corresponding to the dates of the metadata is sequential.
ClimaCalibrate.Checker.SignChecker — Typestruct SignChecker{FT <: AbstractFloat} <: AbstractCheckerA struct that checks that the proportion of positive values in the simulation data and observational data is roughly the same.
To change the default threshold of 0.05, you can pass a float to SignChecker.
import ClimaCalibrate
sign_checker = ClimaCalibrate.Checker.SignChecker(0.01)ClimaCalibrate.Checker.check — Functioncheck(checker::AbstractChecker,
var,
metadata;
data = nothing,
verbose = false)Return true if the check passes, false otherwise.
If verbose=true, then provides information for why a check did not succeed.
Checker.check(
::ShortNameChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if var and metadata have the same short name, false otherwise.
Checker.check(
::DimNameChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if var and metadata have the same dimensions, false otherwise.
Checker.check(
::DimUnitsChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if the units of the dimensions in var and metadata are the same, false otherwise. This function assumes var and metadata have the same dimensions.
Checker.check(
::UnitsChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if var and metadata have the same units, false otherwise.
Checker.check(
::DimValuesMatch,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if the values of the dimensions in var and metadata are compatible for the purpose of filling out the G ensemble matrix, false otherwise.
The nontemporal dimensions are compatible if the values are approximately the same. The temporal dimensions are compatible if the temporal dimension of metadata is a subset of the temporal dimension of var.
Checker.check(
::SequentialIndicesChecker,
var::OutputVar,
metadata::Metadata;
data = nothing,
verbose = false,
)Return true if the dates of var map to sequential indices of the dates of metadata, false otherwise.
This check is helpful in ensuring that the dates are matched correctly between var and metadata. For example, without this check, if the simulation data contain monthly averages and metadata track seasonal averages, then no error is thrown, because all dates in metadata are in all the dates in var.
Checker.check(
::SignChecker,
var::OutputVar,
metadata::Metadata;
data,
verbose = false,
)Return true if the absolute difference of the proportion of positive values in var.data and the proportion of positive values in data is less than the threshold defined in SignChecker, false otherwise.