ClimaCoreSpectra.jl

ClimaCoreSpectra.jl provides functionality for calculating kinetic energy spectra using spherical harmonics.

Interface

ClimaCoreSpectra.power_spectrum_1dFunction
power_spectrum_1d(FT, var_grid, z, lat, lon, weight)

For a variable var_grid on a (lon,lat,z) grid, given an array of weights, compute the zonal (1D) power spectrum using a Fourier transform at each Gaussian latitude. The input field must be first intepolated to a Gaussian grid.

Arguments

  • FT: FloatType
  • var_grid: variable on a Gaussian (lon, lat, z) grid to be transformed
  • z: Array with uniform z levels
  • lat: Array with uniform lats
  • lon: Array with uniform longs
  • weight: Array with weights for mass-weighted calculations
source
ClimaCoreSpectra.power_spectrum_2dFunction
power_spectrum_2d(FT, var_grid, mass_weight)

Transform a variable defined on a regular lat long grid to the 2d spectral space using fft on latitude circles (as for the 1D spectrum) and Legendre polynomials for meridians, and calculate spectra.

Arguments

  • FT: FloatType
  • var_grid: variable on a Gaussian (lon, lat, z) grid to be transformed
  • mass_weight: Array with weights for mass-weighted calculations.

References

source
ClimaCoreSpectra.compute_gaussian!Function
compute_gaussian!(FT, n)

Compute sin(latitude) and the weight factors for Gaussian integration.

Arguments

  • FT: FloatType
  • n: Int, number of Gaussian latitudes

References

  • Ehrendorfer, M., Spectral Numerical Weather Prediction Models, Appendix B, Society for Industrial and Applied Mathematics, 2011

Details (following notation from Ehrendorfer, 2011):

Pn(x) is an odd function
solve half of the n roots and weightes of Pn(x) # n = 2n_half
P_{-1}(x) = 0
P_0(x) = 1
P_1(x) = x
nP_n(x) = (2n-1)xP_{n-1}(x) - (n-1)P_{n-2}(x)
P'_n(x) = n/(x^2-1)(xP_{n}(x) - P_{n-1}(x))
x -= P_n(x)/P'_{n}()
Initial guess xi^{0} = cos(π(i-0.25)/(n+0.5))
wi = 2/(1-xi^2)/P_n'(xi)^2
source
ClimaCoreSpectra.compute_legendre!Function
compute_legendre!(FT, num_fourier, num_spherical, sinθ, nθ)

Normalized associated Legendre polynomials, P_{m,l} = qnm.

Arguments:

  • FT: FloatType
  • num_fourier: Int, number of truncated zonal wavenumbers (m)
  • num_spherical: Int, number of total wavenumbers (n)
  • sinθ: Array{FT} with sin(latitude)
  • nθ: Int, number of Gaussian latitudes

References:

  • Ehrendorfer, M. (2011) Spectral Numerical Weather Prediction Models, Appendix B, Society for Industrial and Applied Mathematics
  • Winch, D. (2007) Spherical harmonics, in Encyclopedia of Geomagnetism and Paleomagnetism, Eds Gubbins D. and Herrero-Bervera, E., Springer

Details (using notation and Eq. references from Ehrendorfer, 2011):

l=0,1...∞    and m = -l, -l+1, ... l-1, l
P_{0,0} = 1, such that 1/4π ∫∫YYdS = δ (where Y = spherical harmonics, S = domain surface area)
P_{m,m} = sqrt((2m+1)/2m) cosθ P_{m-1,m-1}
P_{m+1,m} = sqrt(2m+3) sinθ P_{m,m}
sqrt((l^2-m^2)/(4l^2-1))P_{l,m} = P_{l-1, m} -  sqrt(((l-1)^2-m^2)/(4(l-1)^2 - 1))P_{l-2,m}
THe normalization assures that 1/2 ∫_{-1}^1 P_{l,m}(sinθ) P_{n,m}(sinθ) dsinθ = δ_{n,l}
Julia index starts with 1, so qnm[m+1,l+1] = P_l^m
source
ClimaCoreSpectra.trans_grid_to_spherical!Function
trans_grid_to_spherical!(mesh::SpectralSphericalMesh, pfield::Arr{FT,2})

Transforms a variable on a Gaussian grid (pfield[nλ, nθ]) into the spherical harmonics domain (varspherical2d[numfourier+1, num_spherical+1]).

Details:

Here λ = longitude, θ = latitude, η = sinθ, m = zonal wavenumber, n = total wavenumber:
var_spherical2d = F_{m,n}    # Output variable in spectral space (Complex{FT}[num_fourier+1, num_spherical+1])
qwg = P_{m,n}(η)w(η)         # Weighted Legendre polynomials (FT[num_fourier+1, num_spherical+1, nθ])
var_fourier2d = g_{m, θ}     # Untruncated Fourier transformation (Complex{FT} [nλ, nθ])
pfield = F(λ, η)             # Input variable on Gaussian grid FT[nλ, nθ]

Arguments

  • mesh: struct with mesh information
  • pfield: variable on Gaussian grid to be transformed

References

  • Ehrendorfer, M., Spectral Numerical Weather Prediction Models, Appendix B, Society for Industrial and Applied Mathematics, 2011
  • [21]
source
ClimaCoreSpectra.compute_wave_numbers!Function
compute_wave_numbers!(wave_numbers, num_fourier::Int, num_spherical::Int)

Store the total wave number n for this basis in a matrix wave_numbers of shape [m,n].

Arguments:

  • wavenumbers: Matrix of [Int, Int] to store the wave wavenumbers
  • num_fourier: Int, number of truncated zonal wavenumbers (m)
  • num_spherical: Int, number of total wavenumbers (n)
source

Examples

import ClimaCore
fn = joinpath(pkgdir(ClimaCore), "lib", "ClimaCoreSpectra", "test", "gcm_visual_test.jl")
@show fn
ENV["BUILD_DOCS"]=true
include(fn)
fn = "/home/runner/work/ClimaCore.jl/ClimaCore.jl/lib/ClimaCoreSpectra/test/gcm_visual_test.jl"
0.24999873666096548
0.2539586948674971

1D Spectrum Test

Input wave frequency

A 1D wave.

Raw data on rll grid

The 1D raw data to be transformed.

1D Spectrum

The 1D spectrum calculated from the data.

2D Spectrum Test

Raw data on rll grid

The 2D raw data to be transformed.

Reconstruct onto spectral space and transform back to original

The 2D transformed data.

Error

The error between the transformed and initial data.

2D Spectra

The 2D spectrum calculated from the data.