References

[1]
M. A. Taylor and A. Fournier. A compatible and conservative spectral element method on unstructured grids. Journal of Computational Physics 229, 5879–5895 (2010).
[2]
L. J. Wicker and W. C. Skamarock. Time-Splitting Methods for Elastic Models Using Forward Time Schemes. Monthly Weather Review 130, 2088–2097 (2002).
[3]
J. P. Boris and D. L. Book. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works. Journal of Computational Physics 11, 38–69 (1973).
[4]
D. R. Durran. Numerical Methods for Fluid Dynamics (Springer New York, NY, 2010).
[5]
S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of computational physics 31, 335–362 (1979).
[6]
M. Benzi, G. H. Golub and J. Liesen. Numerical solution of saddle point problems. Acta Numerica 14, 1–137 (2005).
[7]
C. Ronchi, R. Iacono and P. S. Paolucci. The $cubed sphere$: a new method for the solution of partial differential equations in spherical geometry. Journal of Computational Physics 124, 93–114 (1996).
[8]
M. Rančić, R. J. Purser and F. Mesinger. A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quarterly Journal of the Royal Meteorological Society 122, 959–982 (1996).
[9]
R. D. Nair, S. J. Thomas and R. D. Loft. A Discontinuous Galerkin Transport Scheme on the Cubed Sphere. Monthly Weather Review 133, 814–828 (2005).
[10]
O. Guba, M. A. Taylor, P. A. Ullrich, J. R. Overfelt and M. N. Levy. The spectral element method (SEM) on variable-resolution grids: evaluating grid sensitivity and resolution-aware numerical viscosity. Geoscientific Model Development 7, 2803–2816 (2014).
[11]
J.-P. Berrut and L. N. Trefethen. Barycentric lagrange interpolation. SIAM review 46, 501–517 (2004).
[12]
T. Gal-Chen and R. C. Somerville. On the use of a coordinate transformation for the solution of the Navier-Stokes equations. Journal of Computational Physics 17, 209–228 (1975).
[13]
C. Schär, D. Leuenberger, O. Fuhrer, D. Lüthi and C. Girard". A New Terrain-Following Vertical Coordinate Formulation for Atmospheric Prediction Models". Monthly Weather Review 130, 2459–2480 (2002).
[14]
O. Guba, M. Taylor and A. St-Cyr. Optimization-based limiters for the spectral element method. Journal of Computational Physics 267, 176–195 (2014).
[15]
L. Bao, R. D. Nair and H. M. Tufo. A mass and momentum flux-form high-order discontinuous Galerkin shallow water model on the cubed-sphere. Journal of Computational Physics 271, 224–243 (2014).
[16]
D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob and P. N. Swarztrauber. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211–224 (1992).
[17]
J. Galewsky, R. K. Scott and L. M. Polvani. An initial-value problem for testing numerical models of the global shallow-water equations. Tellus A: Dynamic Meteorology and Oceanography 56, 429–440 (2004).
[18]
P. A. Ullrich, C. Jablonowski and B. van Leer. High-Order Finite-Volume Methods for the Shallow-Water Equations on the Sphere. J. Comput. Phys. 229, 6104–6134 (2010).
[19]
P. A. Ullrich, C. Jablonowski, J. Kent, P. H. Lauritzen and R. D. Nair. Test Case Document. In: Dynamical Core Model Intercomparison Project ( DCMIP ) (2012).
[20]
F. Baer. An alternate scale representation of atmospheric energy spectra. Journal of the Atmospheric Sciences 29, 649–664 (1972).
[21]
A. WIIN-NIELSEN. On the annual variation and spectral distribution of atmospheric energy 1. Tellus 19, 540–559 (1967).