API
Utilities
ClimaCore.Utilities.PlusHalf
— TypePlusHalf(i)
Represents i + 1/2
, but stored as internally as an integer value. Used for indexing into staggered finite difference meshes: the convention "half" values are indexed at cell faces, whereas centers are indexed at cell centers.
Supports +
, -
and inequalities.
See also half
.
ClimaCore.Utilities.half
— Constantconst half = PlusHalf(0)
ClimaCore.Utilities.UnrolledFunctions
— ModuleUnrolledFunctions
A collection of generated functions that get unrolled during compilation, which make it possible to iterate over nonuniform collections without sacrificing type-stability.
The functions exported by this module are
unrolled_map(f, values, [values2])
: alternative tomap
unrolled_any(f, values)
: alternative toany
unrolled_all(f, values)
: alternative toall
unrolled_filter(f, values)
: alternative tofilter
unrolled_foreach(f, values)
: alternative toforeach
unrolled_in(value, values)
: alternative toin
unrolled_unique(values)
: alternative tounique
unrolled_flatten(values)
: alternative toIterators.flatten
unrolled_flatmap(f, values)
: alternative toIterators.flatmap
unrolled_product(values1, values2)
: alternative toIterators.product
unrolled_findonly(f, values)
: checks that only one value satisfiesf
, and then returns that valueunrolled_split(f, values)
: returns a tuple that contains the result of callingunrolled_filter
withf
and the result of calling it with!f
unrolled_take(values, ::Val{N})
: alternative toIterators.take
, but with anInt
wrapped in aVal
as the second argument instead of a regularInt
; this usually compiles more quickly thanvalues[1:N]
unrolled_drop(values, ::Val{N})
: alternative toIterators.drop
, but with anInt
wrapped in aVal
as the second argument instead of a regularInt
; this usually compiles more quickly thanvalues[(end - N + 1):end]
Utilities.Cache
ClimaCore.Utilities.Cache
— ModuleUtilities.Cache
ClimaCore maintains an internal cache of topology and grid objects: this ensures that if the constructor with the same arguments is invoked again (e.g. by reading from a file), the cached object will be returned (also known as memoization). This has two main advantages:
topology and metric information can be reused, reducing memory usage.
it is easy to check if two fields live on the same grid: we can just check if the underlying grid objects are the same (
===
), rather than checking all the fields are equal (via==
).
However this means that objects in the cache will not be removed from the garbage collector, so we provide an interface to remove these.
ClimaCore.Utilities.Cache.cached_objects
— FunctionUtilities.Cache.cached_objects()
List all currently cached objects.
ClimaCore.Utilities.Cache.clean_cache!
— FunctionUtilities.Cache.clean_cache!(object)
Remove object
from the cache of created objects.
In most cases, this function should not need to be called, unless you are constructing many grid objects, for example when doing a sweep over grid paramaters.
Utilities.Cache.clean_cache!()
Remove all objects from the cache of created objects.
In most cases, this function should not need to be called, unless you are constructing many grid objects, for example when doing a sweep over grid paramaters.
DataLayouts
ClimaCore.DataLayouts
— ModuleClimaCore.DataLayouts
Defines the following DataLayouts (see individual docs for more info):
TODO: Add links to these datalayouts
IJKFVH
IJFH
IJHF
IFH
IHF
DataF
IJF
IF
VF
VIJFH
VIJHF
VIFH
VIHF
IH1JH2
IV1JH2
Notation:
i,j
are horizontal node indices within an elementk
is the vertical node index within an elementf
is the field index (1 if field is scalar, >1 if it is a vector field)v
is the vertical element index in a stackh
is the element stack index
Data layout is specified by the order in which they appear, e.g. IJKFVH
indexes the underlying array as [i,j,k,f,v,h]
Datalayouts that end with the field index
One of the fundamental features of datalayouts is to be able to store multiple variables in the same array, and then access those variables by name. As such, we occasionally must index into multiple variables when performing operations with a datalayout.
We can efficiently support linear indexing with datalayouts whose field index (f
) is first or last. This is for the same reason as https://docs.julialang.org/en/v1/devdocs/subarrays/#Linear-indexing:
Linear indexing can be implemented efficiently when the entire array
has a single stride that separates successive elements, starting from
some offset.
Therefore, we provide special handling for these datalayouts where possible to leverage efficient linear indexing.
Here are some references containing relevant discussions and efforts to leverage efficient linear indexing:
- https://github.com/CliMA/ClimaCore.jl/issues/1889
- https://github.com/JuliaLang/julia/issues/28126
- https://github.com/JuliaLang/julia/issues/32051
- https://github.com/maleadt/StaticCartesian.jl
- https://github.com/JuliaGPU/GPUArrays.jl/pull/454#issuecomment-1431575721
- https://github.com/JuliaGPU/GPUArrays.jl/pull/520
- https://github.com/JuliaGPU/GPUArrays.jl/pull/464
ClimaCore.DataLayouts.DataF
— TypeDataF{S, A} <: Data0D{S}
Backing DataLayout
for 0D point data.
DataF{S}(ArrayType[, ones | zeros | rand])
The ArrayType
constructor returns a DataF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
).
ClimaCore.DataLayouts.IF
— TypeIF{S, Ni, A} <: DataSlab1D{S, Ni}
Backing DataLayout
for 1D spectral element slab data.
Nodal element data (I) are contiguous for each S
datatype struct field (F) for a single element slab.
A DataSlab1D
view can be returned from other Data1D
objects by calling slab(data, idx...)
.
IF{S}(ArrayType[, ones | zeros | rand]; Ni)
The keyword constructor returns a IF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Ni
quadrature degrees of freedom in the horizontal direction
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.IJF
— TypeIJF{S, Nij, A} <: DataSlab2D{S, Nij}
Backing DataLayout
for 2D spectral element slab data.
Nodal element data (I,J) are contiguous for each S
datatype struct field (F) for a single element slab.
A DataSlab2D
view can be returned from other Data2D
objects by calling slab(data, idx...)
.
IJF{S}(ArrayType[, ones | zeros | rand]; Nij)
The keyword constructor returns a IJF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nij
quadrature degrees of freedom per horizontal direction
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.VF
— TypeVF{S, A} <: DataColumn{S, Nv}
Backing DataLayout
for 1D FV column data.
Column level data (V) are contiguous for each S
datatype struct field (F).
A DataColumn
view can be returned from other Data1DX
, Data2DX
objects by calling column(data, idx...)
.
VF{S}(ArrayType[, ones | zeros | rand]; Nv)
The keyword constructor returns a VF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nv
number of vertical degrees of freedom
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.IFH
— TypeIFH{S,Ni,Nh,A} <: Data1D{S, Ni}
IFH{S,Ni,Nh}(ArrayType)
Backing DataLayout
for 1D spectral element slabs.
Element nodal point (I) data is contiguous for each datatype S
struct field (F), for each 1D mesh element (H).
The ArrayType
-constructor makes a IFH 1D Spectral DataLayout given the backing ArrayType
, quadrature degrees of freedom Ni
, and the number of mesh elements Nh
.
IFH{S}(ArrayType[, ones | zeros | rand]; Ni, Nh)
The keyword constructor returns a IFH
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Ni
quadrature degrees of freedom in the horizontal directionNh
number of mesh elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.IJFH
— TypeIJFH{S, Nij, A} <: Data2D{S, Nij}
IJFH{S,Nij}(ArrayType, nelements)
Backing DataLayout
for 2D spectral element slabs.
Element nodal point (I,J) data is contiguous for each datatype S
struct field (F), for each 2D mesh element slab (H).
The ArrayType
-constructor constructs a IJFH 2D Spectral DataLayout given the backing ArrayType
, quadrature degrees of freedom Nij × Nij
, and the number of mesh elements nelements
.
IJFH{S}(ArrayType[, Base.ones | zeros | rand]; Nij, Nh)
The keyword constructor returns a IJFH
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nij
quadrature degrees of freedom per horizontal directionNh
number of mesh elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.VIFH
— TypeVIFH{S, Nv, Ni, A} <: Data1DX{S, Nv, Ni}
Backing DataLayout
for 1D spectral element slab + extruded 1D FV column data.
Column levels (V) are contiguous for every element nodal point (I) for each datatype S
struct field (F), for each 1D mesh element slab (H).
VIFH{S}(ArrayType[, ones | zeros | rand]; Nv, Ni, Nh)
The keyword constructor returns a VIFH
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nv
number of vertical degrees of freedomNi
quadrature degrees of freedom in the horizontal directionNh
number of horizontal elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.VIJFH
— TypeVIJFH{S, Nij, A} <: Data2DX{S, Nij}
Backing DataLayout
for 2D spectral element slab + extruded 1D FV column data.
Column levels (V) are contiguous for every element nodal point (I, J) for each S
datatype struct field (F), for each 2D mesh element slab (H).
VIJFH{S}(ArrayType[, ones | zeros | rand]; Nv, Nij, Nh)
The keyword constructor returns a VIJFH
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nv
number of vertical degrees of freedomNij
quadrature degrees of freedom per horizontal directionNh
number of horizontal elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.IHF
— TypeIHF{S,Ni,Nh,A} <: Data1D{S, Ni}
IHF{S,Ni,Nh}(ArrayType)
Backing DataLayout
for 1D spectral element slabs.
Element nodal point (I) data is contiguous for each datatype S
struct field (F), for each 1D mesh element (H).
The ArrayType
-constructor makes a IHF 1D Spectral DataLayout given the backing ArrayType
, quadrature degrees of freedom Ni
, and the number of mesh elements Nh
.
IHF{S}(ArrayType[, ones | zeros | rand]; Ni, Nh)
The keyword constructor returns a IHF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Ni
quadrature degrees of freedom in the horizontal directionNh
number of mesh elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.IJHF
— TypeIJHF{S, Nij, A} <: Data2D{S, Nij}
IJHF{S,Nij}(ArrayType, nelements)
Backing DataLayout
for 2D spectral element slabs.
Element nodal point (I,J) data is contiguous for each datatype S
struct field (F), for each 2D mesh element slab (H).
The ArrayType
-constructor constructs a IJHF 2D Spectral DataLayout given the backing ArrayType
, quadrature degrees of freedom Nij × Nij
, and the number of mesh elements nelements
.
IJHF{S}(ArrayType[, Base.ones | zeros | rand]; Nij, Nh)
The keyword constructor returns a IJHF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nij
quadrature degrees of freedom per horizontal directionNh
number of mesh elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.VIHF
— TypeVIHF{S, Nv, Ni, A} <: Data1DX{S, Nv, Ni}
Backing DataLayout
for 1D spectral element slab + extruded 1D FV column data.
Column levels (V) are contiguous for every element nodal point (I) for each datatype S
struct field (F), for each 1D mesh element slab (H).
VIHF{S}(ArrayType[, ones | zeros | rand]; Nv, Ni, Nh)
The keyword constructor returns a VIHF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nv
number of vertical degrees of freedomNi
quadrature degrees of freedom in the horizontal directionNh
number of horizontal elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
ClimaCore.DataLayouts.VIJHF
— TypeVIJHF{S, Nij, A} <: Data2DX{S, Nij}
Backing DataLayout
for 2D spectral element slab + extruded 1D FV column data.
Column levels (V) are contiguous for every element nodal point (I, J) for each S
datatype struct field (F), for each 2D mesh element slab (H).
VIJHF{S}(ArrayType[, ones | zeros | rand]; Nv, Nij, Nh)
The keyword constructor returns a VIJHF
given the ArrayType
and (optionally) an initialization method (one of Base.ones
, Base.zeros
, Random.rand
) and the keywords:
Nv
number of vertical degrees of freedomNij
quadrature degrees of freedom per horizontal directionNh
number of horizontal elements
Objects made with the keyword constructor accept integer keyword inputs, so they are dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
Geometry
Global Geometry
ClimaCore.Geometry.AbstractGlobalGeometry
— TypeAbstractGlobalGeometry
Determines the conversion from local coordinates and vector bases to a Cartesian basis.
ClimaCore.Geometry.CartesianGlobalGeometry
— TypeCartesianGlobalGeometry()
Specifies that the local coordinates align with the Cartesian coordinates, e.g. XYZPoint
aligns with Cartesian123Point
, and UVWVector
aligns with Cartesian123Vector
.
Coordinates
ClimaCore.Geometry.AbstractPoint
— TypeAbstractPoint
Represents a point in space.
The following types are supported:
XPoint(x)
YPoint(y)
ZPoint(z)
XYPoint(x, y)
XZPoint(x, z)
XYZPoint(x, y, z)
LatPoint(lat)
LongPoint(long)
LatLongPoint(lat, long)
LatLongZPoint(lat, long, z)
Cartesian1Point(x1)
Cartesian2Point(x2)
Cartesian3Point(x3)
Cartesian12Point(x1, x2)
Cartesian13Point(x1, x3)
Cartesian123Point(x1, x2, x3)
ClimaCore.Geometry.float_type
— Functionfloat_type(T)
Return the floating point type backing T
: T
can either be an object or a type.
Points represent locations in space, specified by coordinates in a given coordinate system (Cartesian, spherical, etc), whereas vectors, on the other hand, represent displacements in space.
An analogy with time works well: times (also called instants or datetimes) are locations in time, while, durations are displacements in time.
Note 1: Latitude and longitude are specified via angles (and, therefore, trigonometric functions: cosd
, sind
, acosd
, asind
, tand
,...) in degrees, not in radians. Moreover, lat
(usually denoted by $\theta$) $\in [-90.0, 90.0]$, and long
(usually denoted by $\lambda$) $\in [-180.0, 180.0]$.
Note 2:: In a Geometry.LatLongZPoint(lat, long, z)
, z
represents the elevation above the surface of the sphere with radius R (implicitly accounted for in the geoemtry).
Note 3: There are also a set of specific Cartesian points (Cartesian1Point(x1)
, Cartesian2Point(x2)
, etc). These are occasionally useful for converting everything to a full Cartesian domain (e.g. for visualization purposes). These are distinct from XYZPoint
as ZPoint
can mean different things in different domains.
Domains
Types
ClimaCore.Domains.AbstractDomain
— TypeAbstractDomain
A domain represents a region of space.
ClimaCore.Domains.IntervalDomain
— TypeIntervalDomain(coord⁻, coord⁺; periodic=true)
IntervalDomain(coord⁻, coord⁺; boundary_names::Tuple{Symbol,Symbol})
Construct a IntervalDomain
, the closed interval is given by coord⁻
, coord⁺
coordinate arguments.
Either a periodic
or boundary_names
keyword argument is required.
ClimaCore.Domains.RectangleDomain
— TypeRectangleDomain(x1::ClosedInterval, x2::ClosedInterval;
x1boundary::Tuple{Symbol,Symbol},
x2boundary::Tuple{Symbol,Symbol},
x1periodic = false,
x2periodic = false,
)
Construct a RectangularDomain
in the horizontal. If a given x1 or x2 boundary is not periodic, then x1boundary
or x2boundary
boundary name keyword arguments must be supplied.
ClimaCore.Domains.SphereDomain
— TypeSphereDomain(radius)
A domain representing the surface of a sphere with radius radius
.
Interfaces
ClimaCore.Domains.boundary_names
— Functionboundary_names(obj::Union{AbstractDomain, AbstractMesh, AbstractTopology})
A tuple or vector of unique boundary names of a spatial domain.
Meshes
A Mesh
is a division of a domain into elements.
Mesh types
ClimaCore.Meshes.AbstractMesh
— TypeAbstractMesh{dim}
A Mesh
is an object which represents how we discretize a domain into elements.
It should be lightweight (i.e. exists on all MPI ranks), e.g for meshes stored in a file, it would contain the filename.
Face and vertex numbering
In 1D, faces and vertices are the same, and both are numbered [1,2]
.
In 2D, a face is a line segment between to vertices, and both are numbered [1,2,3,4]
, in a counter-clockwise direction.
v4 f3 v3
o-----------------o
| | face vertices
| | f1 => v1 v2
f4 | | f2 f2 => v2 v3
| | f3 => v3 v4
| | f4 => v4 v1
| |
o-----------------o
v1 f1 v2
Interface
A subtype of AbstractMesh
should define the following methods:
domain(mesh)
elements(mesh)
is_boundary_face(mesh, elem, face)
boundary_face_name(mesh, elem, face)
opposing_face(mesh, elem, face)
coordinates(mesh, elem, vert)
containing_element
(optional)
The following types/methods are provided by AbstractMesh
:
ClimaCore.Meshes.IntervalMesh
— TypeIntervalMesh <: AbstractMesh
A 1D mesh on an IntervalDomain
.
Constuctors
IntervalMesh(domain::IntervalDomain, faces::AbstractVector)
Construct a 1D mesh with face locations at faces
.
IntervalMesh(domain::IntervalDomain[, stretching=Uniform()]; nelems=)
Constuct a 1D mesh on domain
with nelems
elements, using stretching
. Possible values of stretching
are:
ClimaCore.Meshes.RectilinearMesh
— TypeRectilinearMesh <: AbstractMesh2D
Constructors
RectilinearMesh(domain::RectangleDomain, n1, n2)
Construct a RectilinearMesh
of equally-spaced n1
by n2
elements on domain
.
RectilinearMesh(intervalmesh1::IntervalMesh1, intervalmesh2::IntervalMesh2)
Construct the product mesh of intervalmesh1
and intervalmesh2
.
ClimaCore.Meshes.AbstractCubedSphere
— TypeAbstractCubedSphere <: AbstractMesh2D
This is an abstract type of cubed-sphere meshes on SphereDomain
s. A cubed-sphere mesh has 6 panels, laid out as follows:
: Panel 1 :
+-------------+-------------+
| +x1 | +x1 |
| | |
| Panel | Panel |
|+x3 5 -x3|-x2 6 +x2|
| -x2 | -x3 |
| | |
| -x1 | -x1 |
+-------------+-------------+-------------+
| -x2 | -x2 |
| | |
| Panel | Panel |
|+x1 3 -x1|+x3 4 -x3|
| +x3 | -x1 |
| | |
| +x2 | +x2 |
+-------------+-------------+-------------+
| +x3 | +x3 |
| | |
| Panel | Panel |
|-x2 1 +x2|+x1 2 -x1|
| +x1 | +x2 |
| | |
| -x3 | -x3 |
+-------------+-------------+
: Panel 6 :
This is the same panel ordering used by the S2 Geometry library (though we use 1-based instead of 0-based numering).
Elements are indexed by a CartesianIndex{3}
object, where the components are:
- horizontal element index (left to right) within each panel.
- vertical element index (bottom to top) within each panel.
- panel number
Subtypes should have the following fields:
domain
: aSphereDomain
ne
: number of elements across each panel
External links
ClimaCore.Meshes.EquiangularCubedSphere
— TypeEquiangularCubedSphere <: AbstractCubedSphere
An equiangular gnomonic mesh proposed by [7]. Uses the element indexing convention of AbstractCubedSphere
.
Constructors
EquiangularCubedSphere(
domain::Domains.SphereDomain,
ne::Integer,
localelementmap=NormalizedBilinearMap()
)
Constuct an EquiangularCubedSphere
on domain
with ne
elements across each panel.
ClimaCore.Meshes.EquidistantCubedSphere
— TypeEquidistantCubedSphere <: AbstractCubedSphere
An equidistant gnomonic mesh outlined in [8] and [9]. Uses the element indexing convention of AbstractCubedSphere
.
Constructors
EquidistantCubedSphere(domain::Domains.SphereDomain, ne::Integer)
Constuct an EquidistantCubedSphere
on domain
with ne
elements across each panel.
ClimaCore.Meshes.ConformalCubedSphere
— TypeConformalCubedSphere <: AbstractCubedSphere
A conformal mesh outlined in [8]. Uses the element indexing convention of AbstractCubedSphere
.
Constructors
ConformalCubedSphere(domain::Domains.SphereDomain, ne::Integer)
Constuct a ConformalCubedSphere
on domain
with ne
elements across each panel.
Local element map
ClimaCore.Meshes.LocalElementMap
— TypeLocalElementMap
An abstract type of mappings from the reference element to a physical domain.
ClimaCore.Meshes.IntrinsicMap
— TypeIntrinsicMap()
This LocalElementMap
uses the intrinsic mapping of the cubed sphere to map the reference element to the physical domain.
ClimaCore.Meshes.NormalizedBilinearMap
— TypeNormalizedBilinearMap()
The LocalElementMap
for meshes on spherical domains of [10]. It uses bilinear interpolation between the Cartesian coordinates of the element vertices, then normalizes the result to lie on the sphere.
Mesh stretching
ClimaCore.Meshes.Uniform
— TypeUniform()
Use uniformly-sized elements.
ClimaCore.Meshes.ExponentialStretching
— TypeExponentialStretching(H::FT)
Apply exponential stretching to the domain when constructing elements. H
is the scale height (a typical atmospheric scale height H ≈ 7.5
km).
For an interval $[z_0,z_1]$, this makes the elements uniformally spaced in $\zeta$, where
\[\zeta = \frac{1 - e^{-\eta/h}}{1-e^{-1/h}},\]
where $\eta = \frac{z - z_0}{z_1-z_0}$, and $h = \frac{H}{z_1-z_0}$ is the non-dimensional scale height. If reverse_mode
is true
, the smallest element is at the top, and the largest at the bottom (this is typical for land model configurations).
Then, the user can define a stretched mesh via
ClimaCore.Meshes.IntervalMesh(interval_domain, ExponentialStretching(H); nelems::Int, reverse_mode = false)
faces
contain reference z without any warping.
ClimaCore.Meshes.GeneralizedExponentialStretching
— TypeGeneralizedExponentialStretching(dz_bottom::FT, dz_top::FT)
Apply a generalized form of exponential stretching to the domain when constructing elements. dz_bottom
and dz_top
are target element grid spacings at the bottom and at the top of the vertical column domain (m). In typical atmosphere configurations, dz_bottom
is the smallest grid spacing and dz_top
the largest one. On the other hand, for typical land configurations, dz_bottom
is the largest grid spacing and dz_top
the smallest one.
For land configurations, use reverse_mode
= true
(default value false
).
Then, the user can define a generalized stretched mesh via
ClimaCore.Meshes.IntervalMesh(interval_domain, GeneralizedExponentialStretching(dz_bottom, dz_top); nelems::Int, reverse_mode = false)
faces
contain reference z without any warping.
ClimaCore.Meshes.HyperbolicTangentStretching
— TypeHyperbolicTangentStretching(dz_surface::FT)
Apply a hyperbolic tangent stretching to the domain when constructing elements. dz_surface
is the target element grid spacing at the surface. In typical atmosphere configuration, it is the grid spacing at the bottom of the vertical column domain (m). On the other hand, for typical land configurations, it is the grid spacing at the top of the vertical column domain.
For an interval $[z_0,z_1]$, this makes the elements uniformally spaced in $\zeta$, where
\[\eta = 1 - \frac{tanh[\gamma(1-\zeta)]}{tanh(\gamma)},\]
where $\eta = \frac{z - z_0}{z_1-z_0}$. The stretching parameter $\gamma$ is chosen to achieve a given resolution dz_surface
at the surface.
Then, the user can define a stretched mesh via
ClimaCore.Meshes.IntervalMesh(interval_domain, HyperbolicTangentStretching(dz_surface); nelems::Int, reverse_mode)
reverse_mode
is default to false for atmosphere configurations. For land configurations, use reverse_mode
= true
.
faces
contain reference z without any warping.
Mesh utilities
ClimaCore.Meshes.truncate_mesh
— Functiontruncate_mesh(
parent_mesh::AbstractMesh,
trunc_domain::IntervalDomain{CT},
)
Constructs an IntervalMesh
, truncating the given parent_mesh
defined on a truncated trunc_domain
. The truncation preserves the number of degrees of freedom covering the space from the trunc_domain
's z_bottom
to z_top
, adjusting the stretching.
Interfaces
ClimaCore.Meshes.domain
— FunctionMeshes.domain(mesh::AbstractMesh)
The domain (a subtype of Domains.AbstractDomain
) on which the mesh is defined.
ClimaCore.Meshes.elements
— FunctionMeshes.elements(mesh::AbstractMesh)
An iterator over the elements of a mesh. Elements of a mesh can be of any type.
ClimaCore.Meshes.nelements
— Functionnelements(mesh::AbstractMesh)
The number of elements in the mesh.
ClimaCore.Meshes.is_boundary_face
— FunctionMeshes.is_boundary_face(mesh::AbstractMesh, elem, face::Int)::Bool
Determine whether face face
of element elem
is on the boundary of mesh
.
elem
should be an element of elements(mesh)
.
ClimaCore.Meshes.boundary_face_name
— FunctionMeshes.boundary_face_name(mesh::AbstractMesh, elem, face::Int)::Union{Symbol,Nothing}
The name of the boundary facing face
of element elem
, or nothing
if it is not on the boundary.
ClimaCore.Meshes.opposing_face
— Functionopelem, opface, reversed = Meshes.opposing_face(mesh::AbstractMesh, elem, face::Int)
The element and face (opelem
, opface
) that oppose face face
of element elem
.
ClimaCore.Meshes.coordinates
— FunctionMeshes.coordinates(mesh, elem, vert::Int)
Meshes.coordinates(mesh, elem, ξ::SVector)
Return the physical coordinates of a point in an element elem
of mesh
. The position of the point can either be a vertex number vert
or the coordinates ξ
in the reference element.
ClimaCore.Meshes.containing_element
— Functionelem = Meshes.containing_element(mesh::AbstractMesh, coord)
The element elem
in mesh
containing the coordinate coord
. If the coordinate falls on the boundary between two or more elements, an arbitrary element is chosen.
ClimaCore.Meshes.reference_coordinates
— Functionξ = Meshes.reference_coordinates(mesh::AbstractMesh, elem, coord)
An SVector
of coordinates in the reference element such that
Meshes.coordinates(mesh, elem, ξ) == coord
This can be used for interpolation to a specific point.
ClimaCore.Meshes.SharedVertices
— TypeMeshes.SharedVertices(mesh, elem, vert)
An iterator over (element, vertex) pairs that are shared with (elem,vert)
.
ClimaCore.Meshes.face_connectivity_matrix
— FunctionM = Meshes.face_connectivity_matrix(mesh, elemorder = elements(mesh))
Construct a Bool
-valued SparseCSCMatrix
containing the face connections of mesh
. Elements are indexed according to elemorder
.
Note that M[i,i] == true
only if two distinct faces of element i
are connected.
ClimaCore.Meshes.vertex_connectivity_matrix
— FunctionM = Meshes.vertex_connectivity_matrix(mesh, elemorder = elements(mesh))
Construct a Bool
-valued SparseCSCMatrix
containing the vertex connections of mesh
. Elements are indexed according to elemorder
.
Note that M[i,i] == true
only if two distinct vertices of element i
are connected.
ClimaCore.Meshes.linearindices
— FunctionMeshes.linearindices(elemorder)
Given a data structure elemorder[i] = elem
that orders elements, construct the inverse map from orderindex = linearindices(elemorder)
such that orderindex[elem] = i
.
This will try to use the most efficient structure available.
ClimaCore.Meshes.element_horizontal_length_scale
— FunctionMeshes.element_horizontal_length_scale(mesh::AbstractMesh)
The approximate length scale (in units of distance) of the elements of the mesh.
Topologies
A Topology
determines the ordering and connections between elements of a mesh.
Types
ClimaCore.Topologies.AbstractTopology
— TypeAbstractTopology
Subtypes of AbstractHorizontalTopology
define connectiveness of a mesh in the horizontal domain.
Interfaces
nelems
domain(topology::AbstractTopology)
mesh
nlocalelems
nneighbors
nsendelems
nghostelems
localelemindex
vertex_coordinates
opposing_face
face_node_index
interior_faces
ghost_faces
vertex_node_index
local_neighboring_elements
ghost_neighboring_elements
local_vertices
ghost_vertices
neighbors
boundary_tags
boundary_tag
boundary_faces
ClimaCore.Topologies.IntervalTopology
— TypeIntervalTopology([context::SingletonCommsContext,] mesh::IntervalMesh)
A sequential topology on an Meshes.IntervalMesh
.
ClimaCore.Topologies.Topology2D
— TypeTopology2D(mesh::AbstractMesh2D, elemorder=Mesh.elements(mesh))
This is a distributed topology for 2D meshes. elemorder
is a vector or other linear ordering of the Mesh.elements(mesh)
. elempid
is a sorted vector of the same length as elemorder
, each element of which contains the pid
of the owning process.
Internally, we can refer to elements in several different ways:
elem
: an element of themesh
. Often aCartesianIndex
object.gidx
: "global index": an enumeration of all elements:elemorder[gidx] == elem
orderindex[elem] == gidx
lidx
: "local index": an enumeration of local elements.local_elem_gidx[lidx] == gidx
sidx
: "send index": an index into the send buffer of a local element. A single local element may have multiplesidx
s if it needs to be send to multiple processes.send_elem_lidx[sidx] == lidx
ridx
: "receive index": an index into the receive buffer of a ghost element.recv_elem_gidx[ridx] == gidx
ClimaCore.Topologies.spacefillingcurve
— Functionspacefillingcurve(mesh::Meshes.AbstractCubedSphere)
Generate element ordering, elemorder
, based on a space filling curve for a CubedSphere
mesh.
spacefillingcurve(mesh::Meshes.RectilinearMesh)
Generate element ordering, elemorder
, based on a space filling curve for a Rectilinear
mesh.
ClimaCore.Topologies.nelems
— Functionnelems(topology)
The total number of elements in topology
.
ClimaCore.Topologies.nneighbors
— Functionnneighbors(topology)
The number of neighbors of this process in topology
.
ClimaCore.Topologies.nsendelems
— Functionnsendelems(topology)
The number of elements to send to neighbors in topology
.
ClimaCore.Topologies.nghostelems
— Functionnghostelems(topology)
The number of ghost elements in topology
.
ClimaCore.Topologies.localelemindex
— Functionlocalelemindex(topology, elem)
The local index for the specified element; useful for distributed topologies.
ClimaCore.Topologies.face_node_index
— Functioni,j = face_node_index(face, Nq, q, reversed=false)
The node indices of the q
th node on face face
, where Nq
is the number of face nodes in each direction.
ClimaCore.Topologies.ghost_faces
— Functionghost_faces(topology::AbstractTopology)
An iterator over the ghost faces of topology
. Each element of the iterator is a 5-tuple the form
(elem1, face1, elem2, face2, reversed)
where elemX, faceX
are the element and face numbers, and reversed
indicates whether they have opposing orientations.
ClimaCore.Topologies.vertex_node_index
— Functioni,j = vertex_node_index(vertex_num, Nq)
The node indices of vertex_num
, where Nq
is the number of face nodes in each direction.
ClimaCore.Topologies.local_vertices
— Functionlocal_vertices(topology)
An iterator over the interior vertices of topology
. Each vertex is an iterator over (lidx, vert)
pairs.
ClimaCore.Topologies.ghost_vertices
— Functionghost_vertices(topology)
An iterator over the ghost vertices of topology
. Each vertex is an iterator over (isghost, lidx/ridx, vert)
pairs.
ClimaCore.Topologies.neighbors
— Functionneighbors(topology)
Returns an array of the PIDs of the neighbors of this process.
Interfaces
ClimaCore.Topologies.mesh
— Functionmesh(topology)
Returns the mesh underlying the topology
ClimaCore.Topologies.nlocalelems
— Functionnlocalelems(topology)
The number of local elements in topology
.
ClimaCore.Topologies.vertex_coordinates
— Function(c1,c2,c3,c4) = vertex_coordinates(topology, elem)
The coordinates of the 4 vertices of element elem
.
ClimaCore.Topologies.opposing_face
— Function(opelem, opface, reversed) = opposing_face(topology, elem, face)
The opposing face of face number face
of element elem
in topology
.
opelem
is the opposing element number, 0 for a boundary, negative for a ghost elementopface
is the opposite face number, or boundary face number if a boundaryreversed
indicates whether the opposing face has the opposite orientation.
ClimaCore.Topologies.interior_faces
— Functioninterior_faces(topology::AbstractTopology)
An iterator over the interior faces of topology
. Each element of the iterator is a 5-tuple the form
(elem1, face1, elem2, face2, reversed)
where elemX, faceX
are the element and face numbers, and reversed
indicates whether they have opposing orientations.
ClimaCore.Topologies.boundary_tags
— Functionboundary_tags(topology)
A Tuple
or NamedTuple
of the boundary tags of the topology. A boundary tag is an integer that uniquely identifies a boundary.
ClimaCore.Topologies.boundary_tag
— Functionboundary_tag(topology, name::Symbol)
The boundary tag of the topology for boundary name name
. A boundary tag is an integer that uniquely identifies a boundary.
ClimaCore.Topologies.boundary_faces
— Functionboundary_faces(topology, boundarytag)
An iterator over the faces of topology
which face the boundary with tag boundarytag
. Each element of the iterator is an (elem, face)
pair.
ClimaCore.Topologies.local_neighboring_elements
— Functionlocal_neighboring_elements(topology::AbstractTopology, lidx::Integer)
An iterator of the local element indices (lidx) of the local elements which are neighbors of the local element lidx
in topology
(excluding lidx
itself).
ClimaCore.Topologies.ghost_neighboring_elements
— Functionghost_neighboring_elements(topology::AbstractTopology, ridx::Integer)
An iterator of the receive buffer indices (ridx) of the ghost elements which are neighbors of the local element lidx
in topology
.
Grids
ClimaCore.Grids.ColumnGrid
— TypeColumnGrid(
full_grid :: ExtrudedFiniteDifferenceGrid,
colidx :: ColumnIndex,
)
A view into a column of a ExtrudedFiniteDifferenceGrid
. This can be used as an
ClimaCore.Grids.FiniteDifferenceGrid
— TypeFiniteDifferenceGrid(topology::Topologies.IntervalTopology)
FiniteDifferenceGrid(device::ClimaComms.AbstractDevice, mesh::Meshes.IntervalMesh)
Construct a FiniteDifferenceGrid
from an IntervalTopology
(or an IntervalMesh
).
This is an object which contains all the necessary geometric information.
To avoid unnecessary duplication, we memoize the construction of the grid.
ClimaCore.Grids.ExtrudedFiniteDifferenceGrid
— TypeExtrudedFiniteDifferenceGrid(
horizontal_space::AbstractSpace,
vertical_space::FiniteDifferenceSpace,
hypsography::HypsographyAdaption = Flat(),
)
Construct an ExtrudedFiniteDifferenceGrid
from the horizontal and vertical spaces.
ClimaCore.Grids.SpectralElementGrid1D
— TypeSpectralElementGrid1D(mesh::Meshes.IntervalMesh, quadrature_style::Quadratures.QuadratureStyle)
A one-dimensional space: within each element the space is represented as a polynomial.
ClimaCore.Grids.SpectralElementGrid2D
— TypeSpectralElementSpace2D <: AbstractSpace
A two-dimensional space: within each element the space is represented as a polynomial.
Hypsography
ClimaCore.Grids.Flat
— TypeFlat()
No surface hypsography.
CommonGrids
ClimaCore.CommonGrids
— ModuleCommonGrids
CommonGrids contains convenience constructors for common grids. Constructors in this module are sometimes dynamically created. You may want to use a different constructor if you're making the object in a performance-critical section, and if you know the type parameters at compile time.
If no convenience constructor exists, then you may need to create a custom grid using our low-level compose-able API.
Transitioning to using CommonGrids
You may have constructed a grid in the following way:
using ClimaComms
using ClimaCore: DataLayouts, Geometry, Topologies, Quadratures, Domains, Meshes, Grids
FT = Float64
z_elem = 63
z_min = FT(0)
z_max = FT(1)
radius = FT(6.371229e6)
h_elem = 15
n_quad_points = 4
device = ClimaComms.device()
context = ClimaComms.context(device)
hypsography = Grids.Flat()
global_geometry = Geometry.ShallowSphericalGlobalGeometry(radius)
quad = Quadratures.GLL{n_quad_points}()
h_mesh = Meshes.EquiangularCubedSphere(Domains.SphereDomain{FT}(radius), h_elem)
h_topology = Topologies.Topology2D(context, h_mesh)
z_boundary_names = (:bottom, :top)
z_domain = Domains.IntervalDomain(
Geometry.ZPoint{FT}(z_min),
Geometry.ZPoint{FT}(z_max);
boundary_names = z_boundary_names,
)
z_mesh = Meshes.IntervalMesh(z_domain; nelems = z_elem)
h_grid = Grids.SpectralElementGrid2D(h_topology, quad)
z_topology = Topologies.IntervalTopology(context, z_mesh)
z_grid = Grids.FiniteDifferenceGrid(z_topology)
grid = Grids.ExtrudedFiniteDifferenceGrid(
h_grid,
z_grid,
hypsography,
global_geometry,
)
You may re-write this as:
using ClimaCore.CommonGrids: ExtrudedCubedSphereGrid
grid = ExtrudedCubedSphereGrid(;
z_elem = 63,
z_min = 0,
z_max = 1,
radius = 6.371229e6,
h_elem = 15,
n_quad_points = 4,
)
ClimaCore.CommonGrids.ExtrudedCubedSphereGrid
— FunctionExtrudedCubedSphereGrid(
::Type{<:AbstractFloat}; # defaults to Float64
z_elem::Integer,
z_min::Real,
z_max::Real,
radius::Real,
h_elem::Integer,
n_quad_points::Integer,
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
stretch::Meshes.StretchingRule = Meshes.Uniform(),
hypsography_fun = (h_grid, z_grid) -> Grids.Flat(),
global_geometry::Geometry.AbstractGlobalGeometry = Geometry.ShallowSphericalGlobalGeometry(radius),
quad::Quadratures.QuadratureStyle = Quadratures.GLL{n_quad_points}(),
h_mesh = Meshes.EquiangularCubedSphere(Domains.SphereDomain{FT}(radius), h_elem),
h_topology::Topologies.AbstractDistributedTopology = Topologies.Topology2D(context, h_mesh),
horizontal_layout_type = DataLayouts.IJFH,
z_mesh::Meshes.IntervalMesh = DefaultZMesh(FT; z_min, z_max, z_elem, stretch),
enable_bubble::Bool = false
)
A convenience constructor, which builds an Grids.ExtrudedFiniteDifferenceGrid
, given:
FT
the floating-point type (defaults toFloat64
) [Float32
,Float64
]z_elem
the number of z-pointsz_min
the domain minimum along the z-direction.z_max
the domain maximum along the z-direction.radius
the radius of the cubed sphereh_elem
the number of horizontal elements per side of every panel (6 panels in total)n_quad_points
the number of quadrature points per horizontal elementdevice
theClimaComms.device
context
theClimaComms.context
stretch
the meshMeshes.StretchingRule
(defaults toMeshes.Uniform
)hypsography_fun
a function or callable object (hypsography_fun(h_grid, z_grid) -> hypsography
) for constructing the hypsography model.global_geometry
the global geometry (defaults toGeometry.CartesianGlobalGeometry
)quad
the quadrature style (defaults toQuadratures.GLL{n_quad_points}
)h_mesh
the horizontal mesh (defaults toMeshes.EquiangularCubedSphere
)h_topology
the horizontal topology (defaults toTopologies.Topology2D
)horizontal_layout_type
the horizontal DataLayout type (defaults toDataLayouts.IJFH
). This parameter describes how data is arranged in memory. SeeGrids.SpectralElementGrid2D
for its use.z_mesh
the vertical mesh, defaults to anMeshes.IntervalMesh
alongz
with givenstretch
enable_bubble
enables the "bubble correction" for more accurate element areas when computing the spectral element space. SeeGrids.SpectralElementGrid2D
for more information.
Example usage
using ClimaCore.CommonGrids
grid = ExtrudedCubedSphereGrid(;
z_elem = 10,
z_min = 0,
z_max = 1,
radius = 10,
h_elem = 10,
n_quad_points = 4,
)
ClimaCore.CommonGrids.CubedSphereGrid
— FunctionCubedSphereGrid(
::Type{<:AbstractFloat}; # defaults to Float64
radius::Real,
h_elem::Integer,
n_quad_points::Integer,
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
quad::Quadratures.QuadratureStyle = Quadratures.GLL{n_quad_points}(),
h_mesh = Meshes.EquiangularCubedSphere(Domains.SphereDomain{FT}(radius), h_elem),
h_topology::Topologies.AbstractDistributedTopology = Topologies.Topology2D(context, h_mesh),
horizontal_layout_type = DataLayouts.IJFH,
)
A convenience constructor, which builds a Grids.SpectralElementGrid2D
given:
FT
the floating-point type (defaults toFloat64
) [Float32
,Float64
]radius
the radius of the cubed sphereh_elem
the number of horizontal elements per side of every panel (6 panels in total)n_quad_points
the number of quadrature points per horizontal elementdevice
theClimaComms.device
context
theClimaComms.context
quad
the quadrature style (defaults toQuadratures.GLL{n_quad_points}
)h_mesh
the horizontal mesh (defaults toMeshes.EquiangularCubedSphere
)h_topology
the horizontal topology (defaults toTopologies.Topology2D
)horizontal_layout_type
the horizontal DataLayout type (defaults toDataLayouts.IJFH
). This parameter describes how data is arranged in memory. SeeGrids.SpectralElementGrid2D
for its use.
Example usage
using ClimaCore.CommonGrids
grid = CubedSphereGrid(; radius = 10, n_quad_points = 4, h_elem = 10)
ClimaCore.CommonGrids.ColumnGrid
— FunctionColumnGrid(
::Type{<:AbstractFloat}; # defaults to Float64
z_elem::Integer,
z_min::Real,
z_max::Real,
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
stretch::Meshes.StretchingRule = Meshes.Uniform(),
z_mesh::Meshes.IntervalMesh = DefaultZMesh(FT; z_min, z_max, z_elem, stretch),
)
A convenience constructor, which builds a Grids.FiniteDifferenceGrid
.
Example usage
using ClimaCore.CommonGrids
grid = ColumnGrid(; z_elem = 10, z_min = 0, z_max = 10)
ClimaCore.CommonGrids.Box3DGrid
— FunctionBox3DGrid(
::Type{<:AbstractFloat}; # defaults to Float64
z_elem::Integer,
x_min::Real,
x_max::Real,
y_min::Real,
y_max::Real,
z_min::Real,
z_max::Real,
periodic_x::Bool,
periodic_y::Bool,
n_quad_points::Integer,
x_elem::Integer,
y_elem::Integer,
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
stretch::Meshes.StretchingRule = Meshes.Uniform(),
hypsography_fun = (h_grid, z_grid) -> Grids.Flat(),
global_geometry::Geometry.AbstractGlobalGeometry = Geometry.CartesianGlobalGeometry(),
quad::Quadratures.QuadratureStyle = Quadratures.GLL{n_quad_points}(),
horizontal_layout_type = DataLayouts.IJFH,
[h_topology::Topologies.AbstractDistributedTopology], # optional
[z_mesh::Meshes.IntervalMesh], # optional
enable_bubble::Bool = false,
)
A convenience constructor, which builds a Grids.ExtrudedFiniteDifferenceGrid
with a Grids.FiniteDifferenceGrid
vertical grid and a Grids.SpectralElementGrid2D
horizontal grid, given:
z_elem
the number of z-pointsx_min
the domain minimum along the x-direction.x_max
the domain maximum along the x-direction.y_min
the domain minimum along the y-direction.y_max
the domain maximum along the y-direction.z_min
the domain minimum along the z-direction.z_max
the domain maximum along the z-direction.periodic_x
Bool indicating to use periodic domain along x-directionperiodic_y
Bool indicating to use periodic domain along y-directionn_quad_points
the number of quadrature points per horizontal elementx_elem
the number of x-pointsy_elem
the number of y-pointsdevice
theClimaComms.device
context
theClimaComms.context
stretch
the meshMeshes.StretchingRule
(defaults toMeshes.Uniform
)hypsography_fun
a function or callable object (hypsography_fun(h_grid, z_grid) -> hypsography
) for constructing the hypsography model.global_geometry
the global geometry (defaults toGeometry.CartesianGlobalGeometry
)quad
the quadrature style (defaults toQuadratures.GLL{n_quad_points}
)h_topology
the horizontal topology (defaults toTopologies.Topology2D
)z_mesh
the vertical mesh, defaults to anMeshes.IntervalMesh
alongz
with givenstretch
enable_bubble
enables the "bubble correction" for more accurate element areas when computing the spectral element space. SeeGrids.SpectralElementGrid2D
for more information.horizontal_layout_type
the horizontal DataLayout type (defaults toDataLayouts.IJFH
). This parameter describes how data is arranged in memory. SeeGrids.SpectralElementGrid2D
for its use.
Example usage
using ClimaCore.CommonGrids
grid = Box3DGrid(;
z_elem = 10,
x_min = 0,
x_max = 1,
y_min = 0,
y_max = 1,
z_min = 0,
z_max = 10,
periodic_x = false,
periodic_y = false,
n_quad_points = 4,
x_elem = 3,
y_elem = 4,
)
ClimaCore.CommonGrids.SliceXZGrid
— FunctionSliceXZGrid(
::Type{<:AbstractFloat}; # defaults to Float64
z_elem::Integer,
x_min::Real,
x_max::Real,
z_min::Real,
z_max::Real,
periodic_x::Bool,
n_quad_points::Integer,
x_elem::Integer,
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
stretch::Meshes.StretchingRule = Meshes.Uniform(),
hypsography_fun = (h_grid, z_grid) -> Grids.Flat(),
global_geometry::Geometry.AbstractGlobalGeometry = Geometry.CartesianGlobalGeometry(),
quad::Quadratures.QuadratureStyle = Quadratures.GLL{n_quad_points}(),
)
A convenience constructor, which builds a Grids.ExtrudedFiniteDifferenceGrid
with a Grids.FiniteDifferenceGrid
vertical grid and a Grids.SpectralElementGrid1D
horizontal grid, given:
FT
the floating-point type (defaults toFloat64
) [Float32
,Float64
]z_elem
the number of z-pointsx_min
the domain minimum along the x-direction.x_max
the domain maximum along the x-direction.z_min
the domain minimum along the z-direction.z_max
the domain maximum along the z-direction.periodic_x
Bool indicating to use periodic domain along x-directionn_quad_points
the number of quadrature points per horizontal elementx_elem
the number of x-pointsdevice
theClimaComms.device
context
theClimaComms.context
stretch
the meshMeshes.StretchingRule
(defaults toMeshes.Uniform
)hypsography_fun
a function or callable object (hypsography_fun(h_grid, z_grid) -> hypsography
) for constructing the hypsography model.global_geometry
the global geometry (defaults toGeometry.CartesianGlobalGeometry
)quad
the quadrature style (defaults toQuadratures.GLL{n_quad_points}
)
Example usage
using ClimaCore.CommonGrids
grid = SliceXZGrid(;
z_elem = 10,
x_min = 0,
x_max = 1,
z_min = 0,
z_max = 1,
periodic_x = false,
n_quad_points = 4,
x_elem = 4,
)
ClimaCore.CommonGrids.RectangleXYGrid
— FunctionRectangleXYGrid(
::Type{<:AbstractFloat}; # defaults to Float64
x_min::Real,
x_max::Real,
y_min::Real,
y_max::Real,
periodic_x::Bool,
periodic_y::Bool,
n_quad_points::Integer,
x_elem::Integer, # number of horizontal elements
y_elem::Integer, # number of horizontal elements
device::ClimaComms.AbstractDevice = ClimaComms.device(),
context::ClimaComms.AbstractCommsContext = ClimaComms.context(device),
hypsography::Grids.HypsographyAdaption = Grids.Flat(),
global_geometry::Geometry.AbstractGlobalGeometry = Geometry.CartesianGlobalGeometry(),
quad::Quadratures.QuadratureStyle = Quadratures.GLL{n_quad_points}(),
)
A convenience constructor, which builds a Grids.SpectralElementGrid2D
with a horizontal RectilinearMesh
mesh, given:
x_min
the domain minimum along the x-direction.x_max
the domain maximum along the x-direction.y_min
the domain minimum along the y-direction.y_max
the domain maximum along the y-direction.periodic_x
Bool indicating to use periodic domain along x-directionperiodic_y
Bool indicating to use periodic domain along y-directionn_quad_points
the number of quadrature points per horizontal elementx_elem
the number of x-pointsy_elem
the number of y-pointsdevice
theClimaComms.device
context
theClimaComms.context
hypsography_fun
a function or callable object (hypsography_fun(h_grid, z_grid) -> hypsography
) for constructing the hypsography model.global_geometry
the global geometry (defaults toGeometry.CartesianGlobalGeometry
)quad
the quadrature style (defaults toQuadratures.GLL{n_quad_points}
)
Example usage
using ClimaCore.CommonGrids
grid = RectangleXYGrid(;
x_min = 0,
x_max = 1,
y_min = 0,
y_max = 1,
periodic_x = false,
periodic_y = false,
n_quad_points = 4,
x_elem = 3,
y_elem = 4,
)
Spaces
A Space
represents a discretized function space over some domain. Currently two main discretizations are supported: Spectral Element Discretization (both Continuous Galerkin and Discontinuous Galerkin types) and a staggered Finite Difference Discretization. Combination of these two in the horizontal/vertical directions, respectively, is what we call a hybrid space.
Sketch of a 2DX hybrid discretization:
ClimaCore.Spaces
— ModuleMeshes
- domain
- topology
- coordinates
- metric terms (inverse partial derivatives)
- quadrature rules and weights
References / notes
ClimaCore.Spaces.Δz_data
— FunctionΔz_data(space::AbstractSpace)
A DataLayout containing the Δz
on a given space space
.
Finite Difference Spaces
ClimaCore.jl supports staggered Finite Difference discretizations. Finite Differences discretize an interval domain by approximating the function by a value at either the center of each element (also referred to as cell) (CenterFiniteDifferenceSpace
), or the interfaces (faces in 3D, edges in 2D or points in 1D) between elements (FaceFiniteDifferenceSpace
).
Users should construct either the center or face space from the mesh, then construct the other space from the original one: this internally reuses the same data structures, and avoids allocating additional memory.
Internals
ClimaCore.Spaces.Δz_metric_component
— FunctionΔz_metric_component(::Type{<:Goemetry.AbstractPoint})
The index of the z-component of an abstract point in an AxisTensor
.
Spectral Element Spaces
ClimaCore.Spaces.SpectralElementSpace1D
— TypeSpectralElementSpace1D(grid::SpectralElementGrid1D)
SpectralElementSpace1D(
topology::Topologies.IntervalTopology,
quadrature_style::Quadratures.QuadratureStyle;
kwargs...
)
ClimaCore.Spaces.SpectralElementSpace2D
— TypeSpectralElementSpace2D(grid::SpectralElementGrid1D)
SpectralElementSpace2D(
topology::Topologies.Topology2D,
quadrature_style::Quadratures.QuadratureStyle;
kwargs...,
)
ClimaCore.Spaces.SpectralElementSpaceSlab
— TypeSpectralElementSpaceSlab <: AbstractSpace
A view into a SpectralElementSpace2D
for a single slab.
ClimaCore.Spaces.node_horizontal_length_scale
— FunctionSpaces.node_horizontal_length_scale(space::AbstractSpectralElementSpace)
The approximate length scale of the distance between nodes. This is defined as the length scale of the mesh (see Meshes.element_horizontal_length_scale
), divided by the number of unique quadrature points along each dimension.
Quadratures
ClimaCore.Quadratures.QuadratureStyle
— TypeClimaCore.Quadratures.GLL
— TypeGLL{Nq}()
Gauss-Legendre-Lobatto quadrature using Nq
quadrature points.
ClimaCore.Quadratures.GL
— TypeGL{Nq}()
Gauss-Legendre quadrature using Nq
quadrature points.
ClimaCore.Quadratures.Uniform
— TypeUniform{Nq}()
Uniformly-spaced quadrature.
ClimaCore.Quadratures.degrees_of_freedom
— Functiondegrees_of_freedom(QuadratureStyle) -> Int
Returns the degreesoffreedom of the QuadratureStyle
concrete type
ClimaCore.Quadratures.polynomial_degree
— Functionpolynomial_degree(QuadratureStyle) -> Int
Returns the polynomial degree of the QuadratureStyle
concrete type
ClimaCore.Quadratures.quadrature_points
— Functionpoints, weights = quadrature_points(::Type{FT}, quadrature_style)
The points and weights of the quadrature rule in floating point type FT
.
ClimaCore.Quadratures.barycentric_weights
— Functionbarycentric_weights(x::SVector{Nq}) where {Nq}
The barycentric weights associated with the array of point locations x
:
\[w_j = \frac{1}{\prod_{k \ne j} (x_i - x_j)}\]
See [11], equation 3.2.
ClimaCore.Quadratures.interpolation_matrix
— Functioninterpolation_matrix(x::SVector, r::SVector{Nq})
The matrix which interpolates the Lagrange polynomial of degree Nq-1
through the points r
, to points x
. The matrix coefficients are computed using the Barycentric formula of [11], section 4:
\[I_{ij} = \begin{cases} 1 & \text{if } x_i = r_j, \\ 0 & \text{if } x_i = r_k \text{ for } k \ne j, \\ \frac{\displaystyle \frac{w_j}{x_i - r_j}}{\displaystyle \sum_k \frac{w_k}{x_i - r_k}} & \text{otherwise,} \end{cases}\]
where $w_j$ are the barycentric weights, see barycentric_weights
.
ClimaCore.Quadratures.differentiation_matrix
— Functiondifferentiation_matrix(r::SVector{Nq, T}) where {Nq, T}
The spectral differentiation matrix for the Lagrange polynomial of degree Nq-1
interpolating at points r
.
The matrix coefficients are computed using the [11], section 9.3:
\[D_{ij} = \begin{cases} \displaystyle \frac{w_j}{w_i (x_i - x_j)} &\text{ if } i \ne j \\ -\sum_{k \ne j} D_{kj} &\text{ if } i = j \end{cases}\]
where $w_j$ are the barycentric weights, see barycentric_weights
.
differentiation_matrix(FT, quadstyle::QuadratureStyle)
The spectral differentiation matrix at the quadrature points of quadstyle
, using floating point types FT
.
ClimaCore.Quadratures.orthonormal_poly
— FunctionV = orthonormal_poly(points, quad)
V_{ij}
contains the j-1
th Legendre polynomial evaluated at points[i]
. i.e. it is the mapping from the modal to the nodal representation.
Internals
ClimaCore.Topologies.dss_transform
— Functiondss_transform(arg, local_geometry, weight, I)
Transfrom arg[I]
to a basis for direct stiffness summation (DSS). Transformations only apply to vector quantities.
local_geometry[I]
is the relevantLocalGeometry
object. If it isnothing
, then no transformation is performedweight[I]
is the relevant DSS weights. Ifweight
isnothing
, then the result is simply summation.
ClimaCore.Topologies.dss_transform!
— Functiondss_transform!(
device::ClimaComms.AbstractDevice,
dss_buffer::DSSBuffer,
data::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF},
local_geometry::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF},
weight::Union{DataLayouts.IJFH, DataLayouts.IJHF},
perimeter::Perimeter2D,
localelems::AbstractVector{Int},
)
Transforms vectors from Covariant axes to physical (local axis), weights the data at perimeter nodes, and stores result in the perimeter_data
array. This function calls the appropriate version of dss_transform!
based on the data layout of the input arguments.
Arguments:
dss_buffer
:DSSBuffer
generated bycreate_dss_buffer
function for field datadata
: field datalocal_geometry
: local metric information defined at each nodeweight
: local dss weights for horizontal spaceperimeter
: perimeter iteratorlocalelems
: list of local elements to perform transformation operations on
Part of ClimaCore.Spaces.weighted_dss!
.
function dss_transform!(
::ClimaComms.AbstractCPUDevice,
perimeter_data::Union{DataLayouts.VIFH, DataLayouts.VIHF},
data::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF},
perimeter::AbstractPerimeter,
bc,
localelems::Vector{Int},
)
Transforms vectors from Covariant axes to physical (local axis), weights the data at perimeter nodes, and stores result in the perimeter_data
array.
Arguments:
perimeter_data
: contains the perimeter field data, represented on the physical axis, corresponding to the full field data indata
data
: field dataperimeter
: perimeter iteratorbc
: A broadcasted object representing the dss transform.localelems
: list of local elements to perform transformation operations on
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.dss_untransform!
— Functiondss_untransform!(
device::ClimaComms.AbstractDevice,
dss_buffer::DSSBuffer,
data::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF},
local_geometry::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF},
perimeter::AbstractPerimeter,
)
Transforms the DSS'd local vectors back to Covariant12 vectors, and copies the DSS'd data from the perimeter_data
to data
. This function calls the appropriate version of dss_transform!
function based on the data layout of the input arguments.
Arguments:
dss_buffer
:DSSBuffer
generated bycreate_dss_buffer
function for field datadata
: field datalocal_geometry
: local metric information defined at each nodeperimeter
: perimeter iteratorlocalelems
: list of local elements to perform transformation operations on
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.dss_untransform
— Functiondss_untransform(T, targ, local_geometry, I...)
Transform targ[I...]
back to a value of type T
after performing direct stiffness summation (DSS).
ClimaCore.Topologies.dss_local_vertices!
— Functiondss_local_vertices!(
perimeter_data::DataLayouts.VIFH,
perimeter::Perimeter2D,
topology::Topology2D,
)
Apply dss to local vertices.
ClimaCore.Topologies.dss_local!
— Functionfunction dss_local!(
::ClimaComms.AbstractCPUDevice,
perimeter_data::DataLayouts.VIFH,
perimeter::AbstractPerimeter,
topology::AbstractTopology,
)
Performs DSS on local vertices and faces.
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.dss_local_ghost!
— Functionfunction dss_local_ghost!(
::ClimaComms.AbstractCPUDevice,
perimeter_data::DataLayouts.VIFH,
perimeter::AbstractPerimeter,
topology::AbstractTopology,
)
Computes the "local" part of ghost vertex dss. (i.e. it computes the summation of all the shared local vertices of a unique ghost vertex and stores the value in each of the local vertex locations in perimeter_data
)
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.dss_ghost!
— Functiondss_ghost!(
device::ClimaComms.AbstractCPUDevice,
perimeter_data::DataLayouts.VIFH,
perimeter::AbstractPerimeter,
topology::AbstractTopology,
)
Sets the value for all local vertices of each unique ghost vertex, in perimeter_data
, to that of the representative ghost vertex.
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.create_dss_buffer
— Functioncreate_dss_buffer(
data::Union{DataLayouts.IJFH, DataLayouts.VIJFH},
hspace::AbstractSpectralElementSpace,
)
Creates a DSSBuffer
for the field data corresponding to data
Spaces.create_dss_buffer(fv::FieldVector)
Create a NamedTuple of buffers for communicating neighbour information of each Field in fv
. In this NamedTuple, the name of each field is mapped to the buffer.
Spaces.create_dss_buffer(field::Field)
Create a buffer for communicating neighbour information of field
.
create_dss_buffer(
data::Union{DataLayouts.IJFH{S}, DataLayouts.IJHF{S}, DataLayouts.VIJFH{S}, DataLayouts.VIJHF{S}},
topology::Topology2D,
local_geometry::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF, Nothing} = nothing,
local_weights::Union{DataLayouts.IJFH, DataLayouts.IJHF, DataLayouts.VIJFH, DataLayouts.VIJHF, Nothing} = nothing,
) where {S}
Creates a DSSBuffer
for the field data corresponding to data
ClimaCore.Topologies.fill_send_buffer!
— Functionfill_send_buffer!(::ClimaComms.AbstractCPUDevice, dss_buffer::DSSBuffer; synchronize=true)
Loads the send buffer from perimeter_data
. For unique ghost vertices, only data from the representative vertices which store result of "ghost local" DSS are loaded.
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.DSSBuffer
— TypeDSSBuffer{G, D, A, B}
Fields
graph_context
: ClimaComms graph context for communicationperimeter_data
: PerimeterDataLayout
object: typically aVIFH{TT,Nv,Np,Nh}
orVIHF{TT,Nv,Np,Nh}
, whereTT
is the transformed type,Nv
is the number of vertical levels, andNp
is the length of the perimetersend_date
: send bufferAbstractVector{FT}
recv_data
: recv bufferAbstractVector{FT}
send_buf_idx
: indexing array for loading send buffer fromperimeter_data
recv_buf_idx
: indexing array for loading (and summing) data from recv buffer tointernal_elems
: internal local elements (lidx)perimeter_elems
: local elements (lidx) located on process boundary
ClimaCore.Topologies.load_from_recv_buffer!
— Functionload_from_recv_buffer!(::ClimaComms.AbstractCPUDevice, dss_buffer::DSSBuffer)
Adds data from the recv buffer to the corresponding location in perimeter_data
. For ghost vertices, this data is added only to the representative vertices. The values are then scattered to other local vertices corresponding to each unique ghost vertex in dss_local_ghost
.
Part of ClimaCore.Spaces.weighted_dss!
.
ClimaCore.Topologies.dss!
— Functiondss!(data, topology)
Computed unweighted/pure DSS of data
.
ClimaCore.Spaces.weighted_dss_start!
— Functionweighted_dss_start!(
data::Union{
DataLayouts.IFH,
DataLayouts.IHF,
DataLayouts.VIFH,
DataLayouts.VIHF,
DataLayouts.IJFH,
DataLayouts.IJHF,
DataLayouts.VIJFH,
DataLayouts.VIJHF,
},
space::Union{
AbstractSpectralElementSpace,
ExtrudedFiniteDifferenceSpace,
},
dss_buffer::Union{DSSBuffer, Nothing},
)
It comprises of the following steps:
1). Apply Spaces.dss_transform!
on perimeter elements. This weights and tranforms vector fields to physical basis if needed. Scalar fields are weighted. The transformed and/or weighted perimeter data
is stored in perimeter_data
.
2). Apply Spaces.dss_local_ghost!
This computes partial weighted DSS on ghost vertices, using only the information from local
vertices.
3). Spaces.fill_send_buffer!
Loads the send buffer from perimeter_data
. For unique ghost vertices, only data from the representative ghost vertices which store result of "ghost local" DSS are loaded.
4). Start DSS communication with neighboring processes
ClimaCore.Spaces.weighted_dss_internal!
— Functionweighted_dss_internal!(
data::Union{
DataLayouts.IFH,
DataLayouts.IHF,
DataLayouts.VIFH,
DataLayouts.VIHF,
DataLayouts.IJFH,
DataLayouts.IJHF,
DataLayouts.VIJFH,
DataLayouts.VIJHF,
},
space::Union{
AbstractSpectralElementSpace,
ExtrudedFiniteDifferenceSpace,
},
dss_buffer::DSSBuffer,
)
1). Apply Spaces.dss_transform!
on interior elements. Local elements are split into interior and perimeter elements to facilitate overlapping of communication with computation.
2). Probe communication
3). Spaces.dss_local!
computes the weighted DSS on local vertices and faces.
ClimaCore.Spaces.weighted_dss_ghost!
— Functionweighted_dss_ghost!(
data::Union{
DataLayouts.IFH,
DataLayouts.IHF,
DataLayouts.VIFH,
DataLayouts.VIHF,
DataLayouts.IJFH,
DataLayouts.IJHF,
DataLayouts.VIJFH,
DataLayouts.VIJHF,
},
space::Union{
AbstractSpectralElementSpace,
ExtrudedFiniteDifferenceSpace,
},
dss_buffer::Union{DSSBuffer, Nothing},
)
1). Finish communications.
2). Call Spaces.load_from_recv_buffer!
After the communication is complete, this adds data from the recv buffer to the corresponding location in perimeter_data
. For ghost vertices, this data is added only to the representative vertices. The values are then scattered to other local vertices corresponding to each unique ghost vertex in dss_local_ghost
.
3). Call Spaces.dss_untransform!
on all local elements. This transforms the DSS'd local vectors back to Covariant12 vectors, and copies the DSS'd data from the perimeter_data
to data
.
ClimaCore.Spaces.weighted_dss!
— Functionfunction weighted_dss!(
data::Union{
DataLayouts.IFH,
DataLayouts.IHF,
DataLayouts.VIFH,
DataLayouts.VIHF,
DataLayouts.IJFH,
DataLayouts.IJHF,
DataLayouts.VIJFH,
DataLayouts.VIJHF,
},
space::Union{
AbstractSpectralElementSpace,
ExtrudedFiniteDifferenceSpace,
},
dss_buffer::Union{DSSBuffer, Nothing},
)
Computes weighted dss of data
.
It comprises of the following steps:
1). Spaces.weighted_dss_start!
Spaces.weighted_dss!(fv::FieldVector, dss_buffer = Spaces.create_dss_buffer(fv))
Apply weighted direct stiffness summation (DSS) to each field in fv
. If a dss_buffer
object is not provided, a buffer will be created for each field in fv
. Note that using the Pair
interface here parallelizes the weighted_dss!
calls.
Spaces.weighted_dss!(f::Field, dss_buffer = Spaces.create_dss_buffer(field))
Apply weighted direct stiffness summation (DSS) to f
. This operates in-place (i.e. it modifies the f
). ghost_buffer
contains the necessary information for communication in a distributed setting, see Spaces.create_dss_buffer
.
This is a projection operation from the piecewise polynomial space $\mathcal{V}_0$ to the continuous space $\mathcal{V}_1 = \mathcal{V}_0 \cap \mathcal{C}_0$, defined as the field $\theta \in \mathcal{V}_1$ such that for all $\phi \in \mathcal{V}_1$
\[\int_\Omega \phi \theta \,d\Omega = \int_\Omega \phi f \,d\Omega\]
In matrix form, we define $\bar \theta$ to be the unique global node representation, and $Q$ to be the "scatter" operator which maps to the redundant node representation $\theta$
\[\theta = Q \bar \theta\]
Then the problem can be written as
\[(Q \bar\phi)^\top W J Q \bar\theta = (Q \bar\phi)^\top W J f\]
which reduces to
\[\theta = Q \bar\theta = Q (Q^\top W J Q)^{-1} Q^\top W J f\]
Spaces.weighted_dss!(field1 => ghost_buffer1, field2 => ghost_buffer2, ...)
Call Spaces.weighted_dss!
on multiple fields at once, overlapping communication as much as possible.
ClimaCore.Spaces.unique_nodes
— Functionunique_nodes(space::SpectralElementSpace2D)
An iterator over the unique nodes of space
. Each node is represented by the first ((i,j), e)
triple.
This function is experimental, and may change in future.
Utilities
ClimaCore.Spaces.area
— FunctionSpaces.area(space::Spaces.AbstractSpace)
The length/area/volume of space
. This is computed as the sum of the quadrature weights $W_i$ multiplied by the Jacobian determinants $J_i$:
\[\sum_i W_i J_i \approx \int_\Omega \, d \Omega\]
If space
is distributed, this uses a ClimaComms.allreduce
operation.
ClimaCore.Spaces.local_area
— FunctionSpaces.local_area(space::Spaces.AbstractSpace)
The length/area/volume of space
local to the current context. See Spaces.area
RecursiveApply
ClimaCore.RecursiveApply
— ModuleRecursiveApply
This module contains operators to recurse over nested Tuple
s or NamedTuple
s.
To extend to another type T
, define RecursiveApply.rmap(fn, args::T...)
Fields
ClimaCore.Fields.Field
— TypeField(values, space)
A set of values
defined at each point of a space
.
ClimaCore.Fields.coordinate_field
— Functioncoordinate_field(space::AbstractSpace)
Construct a Field
of the coordinates of the space.
ClimaCore.Fields.local_geometry_field
— Functionlocal_geometry_field(space::AbstractSpace)
Construct a Field
of the LocalGeometry
of the space.
Base.zeros
— Methodzeros(space::AbstractSpace)
Construct a field on space
that is zero everywhere.
Base.ones
— Methodones(space::AbstractSpace)
Construct a field on space
that is one everywhere.
Base.sum
— Methodsum([f=identity,] v::Field)
Approximate integration of v
or f.(v)
over the domain. In an AbstractSpectralElementSpace
, an integral over the entire space is computed by summation over the elements of the integrand multiplied by the Jacobian determinants and the quadrature weights at each node within an element. Hence, sum
is computed by summation of the field values multiplied by the Jacobian determinants and quadrature weights:
\[\sum_i f(v_i) W_i J_i \approx \int_\Omega f(v) \, d \Omega\]
where $v_i$ is the value at each node, and $f$ is the identity function if not specified.
If v
is a distributed field, this uses a ClimaComms.allreduce
operation.
ClimaCore.Fields.local_sum
— FunctionFields.local_sum(v::Field)
Compute the approximate integral of v
over the domain local to the current context.
See sum
for the integral over the full domain.
Statistics.mean
— Methodmean([f=identity, ]v::Field)
The mean value of field
or f.(field)
over the domain, weighted by area. Similar to sum
, in an AbstractSpectralElementSpace
, this is computed by summation of the field values multiplied by the Jacobian determinants and quadrature weights:
\[\frac{\sum_i f(v_i) W_i J_i}{\sum_i W_i J_i} \approx \frac{\int_\Omega f(v) \, d \Omega}{\int_\Omega \, d \Omega}\]
where $v_i$ is the Field value at each node, and $f$ is the identity function if not specified.
If v
is a distributed field, this uses a ClimaComms.allreduce
operation.
LinearAlgebra.norm
— Methodnorm(v::Field, p=2; normalize=true)
The approximate $L^p$ norm of v
, where $L^p$ represents the space of measurable functions for which the p-th power of the absolute value is Lebesgue integrable, that is:
\[\| v \|_p = \left( \int_\Omega |v|^p d \Omega \right)^{1/p}\]
where $|v|$ is defined to be the absolute value if $v$ is a scalar-valued Field, or the 2-norm if it is a vector-valued Field or composite Field (see LinearAlgebra.norm). Similar to sum
and mean
, in an AbstractSpectralElementSpace
, this is computed by summation of the field values multiplied by the Jacobian determinants and quadrature weights. If normalize=true
(the default), then internally the discrete norm is divided by the sum of the Jacobian determinants and quadrature weights:
\[\left(\frac{\sum_i |v_i|^p W_i J_i}{\sum_i W_i J_i}\right)^{1/p} \approx \left(\frac{\int_\Omega |v|^p \, d \Omega}{\int_\Omega \, d \Omega}\right)^{1/p}\]
If p=Inf
, then the norm is the maximum of the absolute values
\[\max_i |v_i| \approx \sup_{\Omega} |v|\]
Consequently all norms should have the same units for all $p$ (being the same as calling norm
on a single value).
If normalize=false
, then the denominator term is omitted, and so the result will be the norm as described above multiplied by the length/area/volume of $\Omega$ to the power of $1/p$.
ClimaCore.Fields.set!
— Functionset!(f::Function, field::Field, args = ())
Apply function f
to populate values in field field
. f
must have a function signature with signature f(::LocalGeometry[, args...])
. Additional arguments may be passed to f
with args
.
ClimaCore.Grids.ColumnIndex
— TypeColumnIndex(ij,h)
An index into a column of a field. This can be used as an argument to getindex
of a Field
, to return a field on that column.
Example
colidx = ColumnIndex((1,1),1)
field[colidx]
ClimaCore.Fields.bycolumn
— FunctionFields.bycolumn(fn, space)
Call fn(colidx)
to every ColumnIndex
colidx
of space
. This can be used to apply multiple column-wise operations in a single pass, making use of multiple threads.
On GPUs this will simply evaluate f
once with colidx=:
(i.e. it doesn't perform evaluation by columns). This may change in future.
Example
∇ = GradientF2C()
div = DivergenceC2F()
bycolumn(axes(f)) do colidx
@. ∇f[colidx] = ∇(f[colidx])
@. df[colidx] = div(∇f[colidx])
end
ClimaCore.Fields.Δz_field
— FunctionΔz_field(field::Field)
Δz_field(space::AbstractSpace)
A Field
containing the Δz
values on the same space as the given field.
Hypsography
ClimaCore.Hypsography.LinearAdaption
— TypeLinearAdaption(surface::Field)
Locate the levels by linear interpolation between the surface field and the top of the domain, using the method of [12].
ClimaCore.Hypsography.SLEVEAdaption
— TypeSLEVEAdaption(surface::Field, ηₕ::FT, s::FT)
Locate vertical levels using an exponential function between the surface field and the top of the domain, using the method of [13]. This method is modified such no warping is applied above some user defined parameter 0 ≤ ηₕ < 1.0, where the lower and upper bounds represent the domain bottom and top respectively. s
governs the decay rate. If the decay-scale is poorly specified (i.e., s * zₜ
is lower than the maximum surface elevation), a warning is thrown and s
is adjusted such that it szₜ > maximum(z_surface)
.
ClimaCore.Hypsography.diffuse_surface_elevation!
— Functiondiffuse_surface_elevation!(f::Field; κ::T, iter::Int, dt::T)
Option for 2nd order diffusive smoothing of generated terrain. Mutate (smooth) a given elevation profile f
before assigning the surface elevation to the HypsographyAdaption
type. A spectral second-order diffusion operator is applied with forward-Euler updates to generate profiles for each new iteration. Steps to generate smoothed terrain ( represented as a ClimaCore Field) are as follows:
- Compute discrete elevation profile f
- Compute diffusesurfaceelevation!(f, κ, iter). f is mutated.
- Define
Hypsography.LinearAdaption(f)
- Define
ExtrudedFiniteDifferenceSpace
with new surface elevation.
Default diffusion parameters are appropriate for spherical arrangements. For zmax-zsfc
== 𝒪(10^4), κ == 𝒪(10^8), dt == 𝒪(10⁻¹).
ClimaCore.Hypsography.ref_z_to_physical_z
— Functionref_z_to_physical_z(adaption::HypsographyAdaption, z_ref::ZPoint, z_surface::ZPoint, z_top::ZPoint) :: ZPoint
Convert reference z
s to physical z
s as prescribed by the given adaption.
This function has to be the inverse of physical_z_to_ref_z
.
Limiters
The limiters supertype is
ClimaCore.Limiters.AbstractLimiter
— TypeThis class of flux-limiters is applied only in the horizontal direction (on spectral advection operators).
Interfaces
ClimaCore.Limiters.QuasiMonotoneLimiter
— TypeQuasiMonotoneLimiter
This limiter is inspired by the one presented in Guba et al [14]. In the reference paper, it is denoted by OP1, and is outlined in eqs. (37)-(40). Quasimonotone here is meant to be monotone with respect to the spectral element nodal values. This limiter involves solving a constrained optimization problem (a weighted least square problem up to a fixed tolerance) that is completely local to each element.
As in HOMME, the implementation idea here is the following: we need to find a grid field which is closest to the initial field (in terms of weighted sum), but satisfies the min/max constraints. So, first we find values that do not satisfy constraints and bring these values to a closest constraint. This way we introduce some change in the tracer mass, which we then redistribute so that the l2 error is smallest. This redistribution might violate constraints; thus, we do a few iterations (until abs(Δtracer_mass) <= rtol * tracer_mass
).
ρq
: tracer density Field, whereq
denotes tracer concentration per unit mass. This can be a scalar field, or a struct-valued field.ρ
: fluid density Field (scalar).
Constructor
limiter = QuasiMonotoneLimiter(ρq::Field; rtol = eps(eltype(parent(ρq))))
Creates a limiter instance for the field ρq
with relative tolerance rtol
.
Usage
Call compute_bounds!
on the input fields:
compute_bounds!(limiter, ρq, ρ)
Then call apply_limiter!
on the output fields:
apply_limiter!(ρq, ρ, limiter)
ClimaCore.Limiters.compute_bounds!
— Functioncompute_bounds!(limiter::QuasiMonotoneLimiter, ρq::Field, ρ::Field)
Compute the desired bounds for the tracer concentration per unit mass q
, based on the tracer density, ρq
, and density, ρ
, fields.
This is computed by
compute_element_bounds!
- starts the ghost exchange (if distributed)
compute_neighbor_bounds_local!
- completes the ghost exchange (if distributed)
compute_neighbor_bounds_ghost!
(if distributed)
ClimaCore.Limiters.apply_limiter!
— Functionapply_limiter!(ρq, ρ, limiter::QuasiMonotoneLimiter)
Apply the limiter on the tracer density ρq
, using the computed desired bounds on the concentration q
and density ρ
as an optimal weight. This iterates over each element, calling apply_limit_slab!
. If the limiter fails to converge for any element, a warning is issued.
Internals
ClimaCore.Limiters.compute_element_bounds!
— Functioncompute_element_bounds!(limiter::QuasiMonotoneLimiter, ρq, ρ)
Given two fields ρq
and ρ
, computes the min and max of q
in each element, storing it in limiter.q_bounds
.
Part of compute_bounds!
.
ClimaCore.Limiters.compute_neighbor_bounds_local!
— Functioncompute_neighbor_bounds_local!(limiter::QuasiMonotoneLimiter, topology)
Update the field limiter.q_bounds_nbr
based on limiter.q_bounds
in the local neighbors.
Part of compute_bounds!
.
ClimaCore.Limiters.compute_neighbor_bounds_ghost!
— Functioncompute_neighbor_bounds_ghost!(limiter::QuasiMonotoneLimiter, topology)
Update the field limiter.q_bounds_nbr
based on limiter.q_bounds
in the ghost neighbors. This should be called after the ghost exchange has completed.
Part of compute_bounds!
.
ClimaCore.Limiters.apply_limit_slab!
— Functionapply_limit_slab!(slab_ρq, slab_ρ, slab_WJ, slab_q_bounds, rtol)
Apply the computed bounds of the tracer concentration (slab_q_bounds
) in the limiter to slab_ρq
, given the total mass slab_ρ
, metric terms slab_WJ
, and relative tolerance rtol
. Return whether the tolerance condition could be satisfied.
InputOutput
Writers
ClimaCore.InputOutput.HDF5Writer
— TypeHDF5Writer(filename::AbstractString[, context::ClimaComms.AbstractCommsContext];
overwrite::Bool = true)
An AbstractWriter
for writing to HDF5-formatted files using the ClimaCore storage conventions. An internal cache is used to avoid writing duplicate domains, meshes, topologies and spaces to the file. Use HDF5Reader
to load the data from the file.
The optional context
can be used for writing distributed fields: in this case, the MPICommsContext
used passed as an argument: this must match the context used for distributing the Field
.
The writer overwrites or appends to existing files depending on the value of the overwrite
keyword argument. When overwrite
is false
, the writer appends to filename
if the file already exists, otherwise it creates a new one.
The default Julia HDF5 binaries are not built with MPI support. To use the distributed functionality, you will need to configure HDF5.jl with an MPI-enabled HDF5 library, see the HDF5.jl documentation.
Interface
Usage
writer = InputOutput.HDF5Writer(filename)
InputOutput.write!(writer, Y, "Y")
close(writer)
ClimaCore.InputOutput.write!
— Functionwrite!(writer::AbstractWriter, obj[, preferredname])
Write the object obj
using writer
. An optional preferredname
can be provided, otherwise defaultname
will be used to generate a name. The name of the object will be returned.
A cache of domains, meshes, topologies and spaces is kept: if one of these objects has already been written, then the file will not be modified: instead the name under which the object was first written will be returned. Note that Field
s and FieldVector
s are not cached, and so can be written multiple times.
write!(writer::HDF5Writer, name => value...)
Write one or more name => value
pairs to writer
.
write!(filename::AbstractString, name => value...)
Write one or more name => value
pairs to the HDF5 file filename
.
Readers
ClimaCore.InputOutput.HDF5Reader
— TypeHDF5Reader(filename::AbstractString[, context::ClimaComms.AbstractCommsContext])
An AbstractReader
for reading from HDF5 files created by HDF5Writer
. The reader object contains an internal cache of domains, meshes, topologies and spaces that are read so that duplicate objects are not created.
The optional context
can be used for reading distributed fields: in this case, the MPICommsContext
used passed as an argument: resulting Field
s will be distributed using this context. As with HDF5Writer
, this requires a HDF5 library with MPI support.
Interface
Usage
reader = InputOutput.HDF5Reader(filename)
Y = read_field(reader, "Y")
Y.c |> propertynames
Y.f |> propertynames
ρ_field = read_field(reader, "Y.c.ρ")
w_field = read_field(reader, "Y.f.w")
close(reader)
To explore the contents of the reader
, use either
julia> reader |> propertynames
e.g, to explore the components of the space
,
julia> reader.space_cache
Dict{Any, Any} with 3 entries:
"center_extruded_finite_difference_space" => CenterExtrudedFiniteDifferenceSpace:…
"horizontal_space" => SpectralElementSpace2D:…
"face_extruded_finite_difference_space" => FaceExtrudedFiniteDifferenceSpace:…
Once "unpacked" as shown above, ClimaCorePlots
or ClimaCoreMakie
can be used to visualise fields. ClimaCoreTempestRemap
supports interpolation onto user-specified grids if necessary.
ClimaCore.InputOutput.read_domain
— Functionread_domain(reader::AbstractReader, name)
Reads a domain named name
from reader
. Domain objects are cached in the reader to avoid creating duplicate objects.
ClimaCore.InputOutput.read_mesh
— Functionread_mesh(reader::AbstractReader, name)
Reads a mesh named name
from reader
, or from the reader cache if it has already been read.
ClimaCore.InputOutput.read_topology
— Functionread_topology(reader::AbstractReader, name)
Reads a topology named name
from reader
, or from the reader cache if it has already been read.
ClimaCore.InputOutput.read_space
— Functionread_space(reader::AbstractReader, name)
Reads a space named name
from reader
, or from the reader cache if it has already been read.
ClimaCore.InputOutput.read_field
— Functionread_field(reader, name)
Reads a Field
or FieldVector
named name
from reader
. Fields are not cached, so that reading the same field multiple times will create multiple distinct objects.
ClimaCore.InputOutput.defaultname
— Functiondefaultname(obj)
Default name of object for InputOutput writers.
Remapping
ClimaCore.Remapping.interpolate_array
— Functioninterpolate_array(field, xpts, ypts)
interpolate_array(field, xpts, ypts, zpts)
Interpolate a field to a regular array using pointwise interpolation.
This is primarily used for plotting and diagnostics.
Examples
longpts = range(Geometry.LongPoint(-180.0), Geometry.LongPoint(180.0), length = 21)
latpts = range(Geometry.LatPoint(-80.0), Geometry.LatPoint(80.0), length = 21)
zpts = range(Geometry.ZPoint(0.0), Geometry.ZPoint(1000.0), length = 21)
interpolate_array(field, longpts, latpts, zpts)
Hypsography is not currently handled correctly.
ClimaCore.Remapping.interpolate
— Functioninterpolate(remapper::Remapper, fields) interpolate!(dest, remapper::Remapper, fields)
Interpolate the given field
(s) as prescribed by remapper
.
The optimal number of fields passed is the buffer_length
of the remapper
. If more fields are passed, the remapper
will batch work with size up to its buffer_length
.
This call mutates the internal (private) state of the remapper
.
Horizontally, interpolation is performed with the barycentric formula in [11], equation (3.2). Vertical interpolation is linear except in the boundary elements where it is 0th order.
interpolate!
writes the output to the given dest
iniation. dest
is expected to be defined on the root process and to be nothing
for the other processes.
Note: interpolate
allocates new arrays and has some internal type-instability, interpolate!
is non-allocating and type-stable.
When using interpolate!
, the dest
ination has to be the same array type as the device in use (e.g., CuArray
for CUDA runs).
Example
Given field1
,field2
, two Field
defined on a cubed sphere.
longpts = range(-180.0, 180.0, 21)
latpts = range(-80.0, 80.0, 21)
zpts = range(0.0, 1000.0, 21)
hcoords = [Geometry.LatLongPoint(lat, long) for long in longpts, lat in latpts]
zcoords = [Geometry.ZPoint(z) for z in zpts]
space = axes(field1)
remapper = Remapper(space, hcoords, zcoords)
int1 = interpolate(remapper, field1)
int2 = interpolate(remapper, field2)
# Or
int12 = interpolate(remapper, [field1, field2])
# With int1 = int12[1, :, :, :]
interpolate(field::ClimaCore.Fields, target_hcoords, target_zcoords)
Interpolate the given fields on the Cartesian product of target_hcoords
with target_zcoords
(if not empty).
Coordinates have to be ClimaCore.Geometry.Points
.
Note: do not use this method when performance is important. Instead, define a Remapper
and call interpolate(remapper, fields)
. Different Field
s defined on the same Space
can share a Remapper
, so that interpolation can be optimized.
Example
Given field
, a Field
defined on a cubed sphere.
longpts = range(-180.0, 180.0, 21)
latpts = range(-80.0, 80.0, 21)
zpts = range(0.0, 1000.0, 21)
hcoords = [Geometry.LatLongPoint(lat, long) for long in longpts, lat in latpts]
zcoords = [Geometry.ZPoint(z) for z in zpts]
interpolate(field, hcoords, zcoords)