This sets up the simulation that mimicks the coarse sand lab experiment presented in Figures 7 and 8a of Lehmann, Assouline, Or (Phys Rev E 77, 2008).

using CairoMakie
import SciMLBase
import ClimaTimeSteppers as CTS
using Thermodynamics

using ClimaCore
import ClimaParams as CP
using SurfaceFluxes
using StaticArrays
using Dates
using DelimitedFiles: readdlm

using ClimaLand
using ClimaLand.Domains: Column
using ClimaLand.Soil
import ClimaLand
import ClimaLand.Parameters as LP
import SurfaceFluxes.Parameters as SFP

FT = Float64;
earth_param_set = LP.LandParameters(FT)
thermo_params = LP.thermodynamic_parameters(earth_param_set);

We model evaporation using Monin-Obukhov surface theory. In our soil model, it is not possible to set the initial condition corresponding to MOST fluxes, but not include radiative fluxes. This is because for land surface models does not make sense to include atmospheric forcing but not radiative forcing.

Because of this, we need to supply downward welling short and long wave radiation. We chose SW = 0 and LW = σT^4, in order to approximately balance out the blackbody emission of the soil which is accounted for by our model. Our assumption is that in the lab experiment there was no radiative heating or cooling of the soil.

start_date = DateTime(2005) # required argument, but not used in this case
SW_d = (t) -> 0
LW_d = (t) -> 301.15^4 * 5.67e-8
radiation = PrescribedRadiativeFluxes(
    FT,
    TimeVaryingInput(SW_d),
    TimeVaryingInput(LW_d),
    start_date,
);

Set up atmospheric conditions that result in the potential evaporation rate obsereved in the experiment. Some of these conditions are reported in the paper.

T_air = FT(301.15)
rh = FT(0.38)
esat = Thermodynamics.saturation_vapor_pressure(
    thermo_params,
    T_air,
    Thermodynamics.Liquid(),
)
e = rh * esat
q = FT(0.622 * e / (101325 - 0.378 * e))
precip = (t) -> 0.0
T_atmos = (t) -> T_air
u_atmos = (t) -> 1.0
q_atmos = (t) -> q
h_atmos = FT(0.1)
P_atmos = (t) -> 101325
gustiness = FT(1e-2)
atmos = PrescribedAtmosphere(
    TimeVaryingInput(precip),
    TimeVaryingInput(precip),
    TimeVaryingInput(T_atmos),
    TimeVaryingInput(u_atmos),
    TimeVaryingInput(q_atmos),
    TimeVaryingInput(P_atmos),
    start_date,
    h_atmos,
    earth_param_set;
    gustiness = gustiness,
);

Define the boundary conditions

top_bc = ClimaLand.Soil.AtmosDrivenFluxBC(atmos, radiation)
zero_water_flux = WaterFluxBC((p, t) -> 0)
zero_heat_flux = HeatFluxBC((p, t) -> 0)
boundary_fluxes = (;
    top = top_bc,
    bottom = WaterHeatBC(; water = zero_water_flux, heat = zero_heat_flux),
);
[ Info: Warning: No runoff model was provided; zero runoff generated.

Define the parameters n and alpha estimated by matching vG curve.

K_sat = FT(225.1 / 3600 / 24 / 1000)
vg_n = FT(10.0)
vg_α = FT(6.0)
hcm = vanGenuchten{FT}(; α = vg_α, n = vg_n)
ν = FT(0.43)
θ_r = FT(0.045)
S_s = FT(1e-3)
ν_ss_om = FT(0.0)
ν_ss_quartz = FT(1.0)
ν_ss_gravel = FT(0.0)
emissivity = FT(1.0)
PAR_albedo = FT(0.2)
NIR_albedo = FT(0.4)
z_0m = FT(1e-3)
z_0b = FT(1e-4)
d_ds = FT(0.01)
params = ClimaLand.Soil.EnergyHydrologyParameters(
    FT;
    ν,
    ν_ss_om,
    ν_ss_quartz,
    ν_ss_gravel,
    hydrology_cm = hcm,
    K_sat,
    S_s,
    θ_r,
    PAR_albedo,
    NIR_albedo,
    emissivity,
    z_0m,
    z_0b,
    earth_param_set,
    d_ds,
);

Domain - single column

zmax = FT(0)
zmin = FT(-0.35)
nelems = 5
soil_domain = Column(; zlim = (zmin, zmax), nelements = nelems)
z = ClimaCore.Fields.coordinate_field(soil_domain.space.subsurface).z;

Soil model, and create the prognostic vector Y and cache p:

soil = Soil.EnergyHydrology{FT}(;
    parameters = params,
    domain = soil_domain,
    boundary_conditions = boundary_fluxes,
    sources = (),
)

Y, p, cds = initialize(soil);

Set initial conditions

function hydrostatic_equilibrium(z, z_interface, params)
    (; ν, S_s, hydrology_cm) = params
    (; α, n, m) = hydrology_cm
    if z < z_interface
        return -S_s * (z - z_interface) + ν
    else
        return ν * (1 + (α * (z - z_interface))^n)^(-m)
    end
end
function init_soil!(Y, z, params)
    FT = eltype(Y.soil.ϑ_l)
    Y.soil.ϑ_l .= hydrostatic_equilibrium.(z, FT(-0.001), params)
    Y.soil.θ_i .= 0
    T = FT(296.15)
    ρc_s = @. Soil.volumetric_heat_capacity(
        Y.soil.ϑ_l,
        FT(0),
        params.ρc_ds,
        params.earth_param_set,
    )
    Y.soil.ρe_int =
        Soil.volumetric_internal_energy.(FT(0), ρc_s, T, params.earth_param_set)
end
init_soil!(Y, z, soil.parameters);

Timestepping:

t0 = Float64(0)
tf = Float64(24 * 3600 * 13)
dt = Float64(900.0)
900.0

We also set the initial conditions of the cache here:

set_initial_cache! = make_set_initial_cache(soil)
set_initial_cache!(p, Y, t0);

Define the tendency functions

exp_tendency! = make_exp_tendency(soil)
imp_tendency! = make_imp_tendency(soil);
jacobian! = ClimaLand.make_jacobian(soil);
jac_kwargs = (; jac_prototype = ImplicitEquationJacobian(Y), Wfact = jacobian!);

timestepper = CTS.ARS111();
ode_algo = CTS.IMEXAlgorithm(
    timestepper,
    CTS.NewtonsMethod(
        max_iters = 1,
        update_j = CTS.UpdateEvery(CTS.NewNewtonIteration),
    ),
);

Define the problem and callbacks:

prob = SciMLBase.ODEProblem(
    CTS.ClimaODEFunction(
        T_exp! = exp_tendency!,
        T_imp! = SciMLBase.ODEFunction(imp_tendency!; jac_kwargs...),
        dss! = ClimaLand.dss!,
    ),
    Y,
    (t0, tf),
    p,
);
saveat = Array(t0:3600.0:tf)
sv = (;
    t = Array{Float64}(undef, length(saveat)),
    saveval = Array{NamedTuple}(undef, length(saveat)),
)
saving_cb = ClimaLand.NonInterpSavingCallback(sv, saveat)
updateat = deepcopy(saveat)
model_drivers = ClimaLand.get_drivers(soil)
updatefunc = ClimaLand.make_update_drivers(model_drivers)
driver_cb = ClimaLand.DriverUpdateCallback(updateat, updatefunc)
cb = SciMLBase.CallbackSet(driver_cb, saving_cb);

Solve

sol = SciMLBase.solve(prob, ode_algo; dt = dt, callback = cb, saveat = saveat);

Figures

Extract the evaporation at each saved step

evap = [
    parent(sv.saveval[k].soil.turbulent_fluxes.vapor_flux_liq)[1] for
    k in 1:length(sol.t)
]
evaporation_data = ClimaLand.Artifacts.lehmann2008_evaporation_data();
ref_soln_E = readdlm(evaporation_data, ',')
ref_soln_E_350mm = ref_soln_E[2:end, 1:2]
data_dates = ref_soln_E_350mm[:, 1]
data_e = ref_soln_E_350mm[:, 2];

fig = Figure(size = (800, 400))
ax = Axis(
    fig[1, 1],
    xlabel = "Day",
    ylabel = "Evaporation rate (mm/d)",
    title = "Bare soil evaporation",
)
CairoMakie.xlims!(minimum(data_dates), maximum(data_dates))
CairoMakie.lines!(
    ax,
    FT.(data_dates),
    FT.(data_e),
    label = "Data",
    color = :blue,
)
CairoMakie.lines!(
    ax,
    sol.t ./ 3600 ./ 24,
    evap .* (1000 * 3600 * 24),
    label = "Model",
    color = :black,
)
CairoMakie.axislegend(ax)

ax = Axis(
    fig[1, 2],
    xlabel = "Mass (g)",
    yticksvisible = false,
    yticklabelsvisible = false,
)
A_col = π * (0.027)^2
mass_0 = sum(sol.u[1].soil.ϑ_l) * 1e6 * A_col
mass_loss =
    [mass_0 - sum(sol.u[k].soil.ϑ_l) * 1e6 * A_col for k in 1:length(sol.t)]
CairoMakie.lines!(
    ax,
    cumsum(FT.(data_e)) ./ (1000 * 24) .* A_col .* 1e6,
    FT.(data_e),
    label = "Data",
    color = :blue,
)
CairoMakie.lines!(
    ax,
    mass_loss,
    evap .* (1000 * 3600 * 24),
    label = "Model",
    color = :black,
)
save("evaporation_lehmann2008_fig8b.png", fig);


This page was generated using Literate.jl.