This shows how to run single column soil model, in standalone mode with spatially varying properties. We are mimicking the experiment carried out in Huang et. al. Can. J. Soil Sci. (2011) 91: 169183 doi:10.4141/CJSS09118, which measured the infiltration of layered soil in Fort McMurray, Alberta, Canada. We thank Mingbin Huang and S. Lee Barbour for correspondence and support, including sharing of data, with us. Note that all data used in this tutorial is available in their publication.

using Plots
import ClimaUtilities.SpaceVaryingInputs: SpaceVaryingInput
import SciMLBase
import ClimaTimeSteppers as CTS
using ClimaCore
import ClimaParams as CP
using DelimitedFiles: readdlm

using ClimaLand
using ClimaLand.Domains: Column
using ClimaLand.Soil
import ClimaLand
FT = Float64;

Define simulation times

t0 = Float64(0)
tf = Float64(60 * 60)
dt = Float64(30);

Define the domain

zmax = FT(0)
zmin = FT(-1.1)
nelems = 75
Δ = FT((zmax - zmin) / nelems / 2)
soil_domain = Column(; zlim = (zmin, zmax), nelements = nelems);

Download the parameter data. This has been obtained from Table 1b of Infiltration and drainage processes in multi-layered coarse soils Mingbin Huang et. al. Can. J. Soil Sci. (2011) 91: 169183 doi:10.4141/CJSS09118

data_file = ClimaLand.Artifacts.huang_et_al2011_soil_van_genuchten_data();
parameter_data = readdlm(data_file, ',');

Our model treats z as increasing in the upwards direction. Values below the surface are negative. Because of this, we convert the (positive-valued) depth of the data into a monotonically increasing z coordinate value. using a negative sign and the reverse function.

depth = reverse(-parameter_data[1, :] .* 0.01) # convert to m
ksat = reverse(parameter_data[6, :] .* 1 / 100.0 / 60.0) # convert cm/min to m/s
vgα = reverse(parameter_data[4, :] .* 100 * 2) # they report αᵈ; αʷ = 2αᵈ. This experiment is for infiltration (wetting).
vgn = reverse(parameter_data[5, :])
residual_frac = reverse(parameter_data[2, :])
porosity = reverse(parameter_data[3, :]);

Create fields corresponding to the parameter

ν = SpaceVaryingInput(depth, porosity, soil_domain.space.subsurface)
K_sat = SpaceVaryingInput(depth, ksat, soil_domain.space.subsurface)
θ_r = SpaceVaryingInput(depth, residual_frac, soil_domain.space.subsurface);

The specific storativity is not something we have data on, so we approximate it as being constant in depth, and create the parameter field directly:

S_s = ClimaCore.Fields.zeros(soil_domain.space.subsurface) .+ 1e-3;

The retention model is a vanGenuchten model with α and n as a function of depth, read from the data:

hcm = SpaceVaryingInput(
    depth,
    (; α = vgα, n = vgn),
    soil_domain.space.subsurface,
    vanGenuchten{FT},
);

The parameter struct:

params = ClimaLand.Soil.RichardsParameters(;
    ν = ν,
    hydrology_cm = hcm,
    K_sat = K_sat,
    S_s = S_s,
    θ_r = θ_r,
);

From here on out, everything should look familiar if you've already gone through the other soil tutorials. Set Boundary conditions: At the top, we use the observed value of Ksat at the top of the domain. Setting the flux to be -Ksat is approximating the top as saturated.

function top_flux_function(p, t)
    return -0.0001033
end
top_bc = ClimaLand.Soil.WaterFluxBC(top_flux_function)
bottom_bc = ClimaLand.Soil.FreeDrainage()
boundary_fluxes = (; top = top_bc, bottom = bottom_bc)
soil = Soil.RichardsModel{FT}(;
    parameters = params,
    domain = soil_domain,
    boundary_conditions = boundary_fluxes,
    sources = (),
);

Initial the state vectors, and set initial conditions

Y, p, cds = initialize(soil);

Initial conditions

Y.soil.ϑ_l .= 0.0353; # read from Figure 4 of Huang et al.

We also set the initial conditions of the auxiliary state here:

set_initial_cache! = make_set_initial_cache(soil)
set_initial_cache!(p, Y, t0);

Timestepping:

stepper = CTS.ARS111()
@assert FT in (Float32, Float64)
err = (FT == Float64) ? 1e-8 : 1e-4
convergence_cond = CTS.MaximumError(err)
conv_checker = CTS.ConvergenceChecker(norm_condition = convergence_cond)
ode_algo = CTS.IMEXAlgorithm(
    stepper,
    CTS.NewtonsMethod(
        max_iters = 10,
        update_j = CTS.UpdateEvery(CTS.NewNewtonIteration),
        convergence_checker = conv_checker,
    ),
)
exp_tendency! = make_exp_tendency(soil)
imp_tendency! = make_imp_tendency(soil)
jacobian! = make_jacobian(soil)

jac_kwargs = (; jac_prototype = ImplicitEquationJacobian(Y), Wfact = jacobian!)
prob = SciMLBase.ODEProblem(
    CTS.ClimaODEFunction(
        T_exp! = exp_tendency!,
        T_imp! = SciMLBase.ODEFunction(imp_tendency!; jac_kwargs...),
        dss! = ClimaLand.dss!,
    ),
    Y,
    (t0, tf),
    p,
)
saveat = [0.0, 8.0, 16.0, 24.0, 32.0, 40.0, 60.0] .* 60 # chosen to compare with data in plots in paper
sol = SciMLBase.solve(prob, ode_algo; dt = dt, saveat = saveat);

z = parent(ClimaCore.Fields.coordinate_field(soil_domain.space.subsurface).z)
ϑ_l = [parent(sol.u[k].soil.ϑ_l) for k in 1:length(sol.t)]
plot(ϑ_l[1], z, label = "initial", color = "grey", aspect_ratio = 0.8)
plot!(ϑ_l[2], z, label = "8min", color = "orange")
plot!(ϑ_l[3], z, label = "16min", color = "red")
plot!(ϑ_l[4], z, label = "24min", color = "teal")
plot!(ϑ_l[5], z, label = "32min", color = "blue")
plot!(ϑ_l[6], z, label = "40min", color = "purple")
plot!(ϑ_l[7], z, label = "60min", color = "green")
scatter!(porosity, depth, label = "Porosity")
plot!(legend = :bottomright)

plot!(xlim = [0, 0.7])

plot!(
    ylim = [-1.1, 0],
    yticks = [-1.1, -1, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1],
)

plot!(ylabel = "Depth (m)")

plot!(xlabel = "Volumeteric Water Content")

savefig("./sv62_alpha_2_inf_updated_data_climaland.png")
"/home/runner/work/ClimaLand.jl/ClimaLand.jl/docs/src/generated/standalone/Soil/sv62_alpha_2_inf_updated_data_climaland.png"


This page was generated using Literate.jl.