References

[1]
S. Manabe. Climate and the Ocean Circulation: I. The Atmospheric Circulation and the Hydrology of the Earth's Surface. Monthly Weather Review 97, 739–774 (1969).
[2]
P. C. Milly and A. B. Shmakin. Global Modeling of Land Water and Energy Balances. Part I: The Land Dynamics (LaD) Model. Journal of Hydrometeorology 3, 283–299 (2002).
[3]
M. M. Laguë, G. B. Bonan and A. L. Swann. Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in Both the Coupled and Uncoupled Land–Atmosphere System. Journal of Climate 32, 5725–5744 (2019).
[4]
C. S. Woodward and C. N. Dawson. Analysis of Operator-Splitting Approaches to Advection-Diffusion-Reaction Equations. SIAM Journal on Numerical Analysis 37, 701–724 (2000).
[5]
G. B. Bonan. Climate Change and Terrestrial Ecosystem Modeling (Cambridge University Press, Cambridge, UK, 2019).
[6]
M. Mizoguchi. Water, Heat and Salt Transport in Freezing Soil. Ph.D. Thesis, University of Tokyo (1990). Ph.D. thesis, in Japanese.
[7]
K. Hansson, P.-E. Jansson, J. Šimůnek and L.-C. Lundin. Simulating Water and Heat Transport in Frozen Soil with Coupled Heat and Mass Transfer Model. Vadose Zone Journal 3, 693–704 (2004).
[8]
M. Dall’Amico, S. Endrizzi, S. Gruber and R. Rigon. A robust and energy-conserving model of freezing variably-saturated soil. The Cryosphere 5, 469–484 (2011).
[9]
B. L. Kurylyk and K. Watanabe. The Mathematical Representation of Freezing and Thawing Processes in Variably-Saturated, Non-Deformable Soils. Advances in Water Resources 60, 160–177 (2013).
[10]
K. Watanabe, B. L. Kurylyk and S. K. Carey. Performance Evaluation of a Physics-Based Permafrost Model across a Range of Climate Conditions. Annals of Glaciology 52, 61–69 (2011).
[11]
S. L. Painter and S. Karra. Constitutive Model for Unfrozen Water Content in Subfreezing Unsaturated Soils. Vadose Zone Journal 13, 1–8 (2014).
[12]
H. Carslaw and J. Jaeger. Conduction of Heat in Solids. 2 Edition (Clarendon Press, Oxford, 1959).
[13]
S. Huang, G. Pavlic, K. C. Van Rees, K. J. Van Rees and J. Feng. Numerical Simulation of Coupled Water and Heat Transport in Freezing Soils: Model Development and Validation. Canadian Journal of Soil Science 91, 169–183 (2011).
[14]
P. Lehmann, S. Assouline and D. Or. Characteristic Lengths Affecting Evaporation from Heterogeneous Porous Media. Physical Review E 77, 056309 (2008).
[15]
H. R. Gardner. Post-Irrigation Movement of Soil Water: 2. Simultaneous Redistribution and Evaporation Following Irrigation. Water Resources Research 6, 9999 (1970).
[16]
P. Lehmann and D. Or. Analytical model for bare soil evaporation dynamics following wetting with concurrent internal drainage. Journal of Hydrology 631, 130800 (2024).
[17]
P. J. Lawrence and T. N. Chase. Representing a MODIS-Consistent Land Surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences 112, G01023 (2007).
[18]
H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J.-R. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. J. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume and J.-N. Thépaut. The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049 (2020).
[19]
[20]
A. Charbonneau, K. Deck and T. Schneider. A Physics‐Constrained Neural Differential Equation Framework for Data‐Driven Snowpack Simulation, arXiv preprint arXiv:2412.06819 (2024). Submitted to Artificial Intelligence for Earth Sciences.
[21]
U.S. Department of Agriculture, Natural Resources Conservation Service. National Engineering Handbook, Part 622: Snow Survey and Water Supply Forecasting (SNOTEL Engineering Handbook) (U.S. Department of Agriculture, Natural Resources Conservation Service, Washington, D.C., 2014). Title 210, NEH, Part 622.
[22]
[23]
P. D. Blanken, R. K. Monson, S. P. Burns, D. R. Bowling and A. A. Turnipseed. AmeriFlux FLUXNET-1F US-NR1 Niwot Ridge Forest (LTER NWT1), Ver. 3-5 (2022). Dataset.
[24]
S. Ma, L. Xu, J. Verfaillie and D. Baldocchi. AmeriFlux FLUXNET-1F US-Var Vaira Ranch-Ione, Ver. 3-5 (2023). Dataset.
[25]
[26]
J.-E. Lee, C. Frankenberg, C. van der Tol, J. Berry, L. Guanter, C. K. Boyce, J. B. Fisher, E. Morrow, J. Worden, S. Asefi, G. Badgley and S. Saatchi. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence. Global Change Biology 21, 3469–3477 (2015).
[27]
G. Egea, A. Verhoef and P. Vidale. On the treatment of plant water stress in coupled photosynthesis–stomatal conductance models: implications for large-scale modeling. Agricultural and Forest Meteorology 151, 1370–1384 (2011).
[28]
A. Tuzet, A. Perrier and R. Leuning. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment 26, 1097–1116 (2003).
[29]
R. A. Duursma and B. E. Medlyn. MAESPA: A model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to CO2 × drought interactions. Geoscientific Model Development 5, 919–940 (2012).
[30]
D. B. Clark, L. M. Mercado, S. Sitch, C. D. Jones, N. Gedney, M. J. Best, M. Pryor, G. G. Rooney, R. L. Essery, E. Blyth, O. Boucher, R. J. Harding, C. Huntingford and P. M. Cox. The Joint UK Land Environment Simulator (JULES), model description–Part 2: carbon fluxes and vegetation dynamics. Geoscientific Model Development 4, 701–722 (2011).