Global full land (snow+soil+canopy) run
The code sets up the ClimaLand land model on a spherical domain, forcing with ERA5 data, but does not actually run the simulation. To run the simulation, we strongly recommend using a GPU.
First we import a lot of packages:
import ClimaComms
ClimaComms.@import_required_backends
using ClimaUtilities
import Interpolations
import ClimaUtilities.TimeVaryingInputs:
TimeVaryingInput, LinearInterpolation, PeriodicCalendar
import ClimaParams as CP
import ClimaLand
import ClimaLand.Parameters as LP
import ClimaLand.Simulations: LandSimulation, solve!
using Dates
using CairoMakie, ClimaAnalysis, GeoMakie, Printf, StatsBase
import ClimaLand.LandSimVis as LandSimVis;
Set the simulation float type, determine the context (MPI or on a single node), and device type (CPU or GPU). Create a default output directory for diagnostics.
const FT = Float64;
context = ClimaComms.context()
ClimaComms.init(context)
device = ClimaComms.device()
device_suffix = device isa ClimaComms.CPUSingleThreaded ? "cpu" : "gpu"
root_path = "land_longrun_$(device_suffix)"
diagnostics_outdir = joinpath(root_path, "global_diagnostics")
outdir =
ClimaUtilities.OutputPathGenerator.generate_output_path(diagnostics_outdir);
earth_param_set = LP.LandParameters(FT);
default_params_filepath =
joinpath(pkgdir(ClimaLand), "toml", "default_parameters.toml")
toml_dict = LP.create_toml_dict(FT, default_params_filepath)
ClimaParams.ParamDict{Float64}(Dict{String, Any}("mixing_length_smin_rm" => Dict{String, Any}("value" => 1.5, "type" => "float", "description" => "Upper ratio limit for the smooth minimum function in the mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Eq. 40."), "mam3_stdev_ait" => Dict{String, Any}("value" => 1.6, "type" => "float", "description" => "Geometric standard deviation for the Aitken mode in the MAM3 scheme (unitless). Source: Liu et al. (2012), DOI: 10.5194/gmd-5-709-2012."), "SB2006_raindrops_breakup_coeff_kbr" => Dict{String, Any}("value" => 1000, "type" => "float", "description" => "Coefficient \$k_{br}\$ in the raindrops breakup rate equation (m⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "root_leaf_nitrogen_ratio" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Ratio of root nitrogen to top leaf nitrogen (unitless)."), "threshold_smooth_transition_steepness" => Dict{String, Any}("value" => 2.0, "type" => "float", "description" => "A unitless steepness parameter for the smooth transition function used in threshold-based processes."), "mam3_stdev_coarse" => Dict{String, Any}("value" => 1.8, "type" => "float", "description" => "Geometric standard deviation for the coarse mode in the MAM3 scheme (unitless). Source: Liu et al. (2012), DOI: 10.5194/gmd-5-709-2012."), "boltzmann_constant" => Dict{String, Any}("value" => 1.381e-23, "type" => "float", "description" => "Boltzmann's constant (\$k_B\$) (J K⁻¹)."), "ice_cloud_effective_radius" => Dict{String, Any}("value" => 2.5e-5, "type" => "float", "description" => "Assumed constant effective radius for ice cloud particles (m)."), "pressure_normalmode_drag_coeff" => Dict{String, Any}("value" => 10.0, "type" => "float", "description" => "Updraft pressure drag coefficient in the perturbation pressure closure (unitless). Source: He et al. (2022), Eq. 34."), "entropy_water_vapor" => Dict{String, Any}("value" => 10513.6, "type" => "float", "description" => "Specific entropy of water vapor at the reference temperature and pressure (J kg⁻¹ K⁻¹)."), "entrainment_smin_tke_coeff" => Dict{String, Any}("value" => 0.3, "type" => "float", "description" => "Scaling constant of the TKE term in the entrainment/detrainment inverse timescale smooth minimum (unitless). Source: Cohen et al. (2022), Table 2."), "CL1993_local_rime_density_quadratic_coeff" => Dict{String, Any}("value" => -5.5, "type" => "float", "description" => "Quadratic coefficient for local rime density in the P3 scheme (kg m⁻³ (m² s⁻¹ °C⁻¹)⁻²). Source: Cober and List (1993), DOI: 10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2."), "snow_flake_size_distribution_coefficient_nu" => Dict{String, Any}("value" => 0.63, "type" => "float", "description" => "Snow size distribution coefficient \$\\nu\$ for the 1-moment microphysics scheme (unitless)."), "reference_liquid_water_specific_humidity" => Dict{String, Any}("value" => 1.0e-6, "type" => "float", "description" => "Normalization factor for cloud liquid water specific humidity in the data-driven CDNC function (kg kg⁻¹)."), "dust_calibration_coefficient" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Calibration coefficient for dust aerosol in the data-driven cloud droplet number concentration function (unitless)."), "mixing_length_diss_coeff" => Dict{String, Any}("value" => 0.22, "type" => "float", "description" => "TKE dissipation coefficient (\$c_d\$) for the EDMF mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Table 1."), "KK2000_autoconversion_coeff_c" => Dict{String, Any}("value" => -1.47, "type" => "float", "description" => "Coefficient \$c\$ in the Khairoutdinov and Kogan (2000) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "temperature_reference_soil_hydraulic_conductivity" => Dict{String, Any}("value" => 288, "type" => "float", "description" => "The reference temperature for adjusting soil hydraulic conductivity (K)."), "reference_ammonium_sulfate_mass_concentration" => Dict{String, Any}("value" => 1.0e-8, "type" => "float", "description" => "Normalization factor for ammonium sulfate mass concentration in the data-driven CDNC function (kg kg⁻¹)."), "seasalt_aerosol_osmotic_coefficient" => Dict{String, Any}("value" => 0.9, "type" => "float", "description" => "Osmotic coefficient of sea salt aerosol (unitless)."), "microph_scaling_evap" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling factor for evaporation in microphysics (unitless)."), "Weibull_c" => Dict{String, Any}("tag" => "Weibull", "value" => 4, "type" => "float", "description" => "Weibull parameter c, which controls shape the shape of the conductance curve (Sperry, 2016). Unitless. Holtzman's original c param value."), "BarklieGokhale1959_B_parameter" => Dict{String, Any}("value" => 0.0002, "type" => "float", "description" => "Parameter 'B' for rainwater, used to determine P3 heterogeneous freezing (cm⁻³ s⁻¹). Source: Barklie & Gokhale (1959), see Pruppacher & Klett (1997), p. 350."), "temperature_homogenous_nucleation" => Dict{String, Any}("value" => 233, "type" => "float", "description" => "Temperature for homogeneous ice nucleation (K)."), "molar_mass_dry_air" => Dict{String, Any}("value" => 0.02897, "type" => "float", "description" => "Molar mass of dry air (kg mol⁻¹)."), "Chen2022_table_B3_Bs" => Dict{String, Any}("value" => [0.575231, 0.0909307, 0.515579], "type" => "float", "description" => "Coefficients \$B_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "J_ABIFM_m_MiddleEasternDust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Empirical coefficient 'm' for the immersion freezing rate (\$J_{het}\$) of Middle Eastern Dust (unitless)."), "supersaturation_precipitation_threshold" => Dict{String, Any}("value" => 0.02, "type" => "float", "description" => "Precipitation formation threshold in terms of supersaturation for the 0-moment microphysics scheme (unitless)."), "C_H" => Dict{String, Any}("value" => 0.0044, "type" => "float", "description" => "Bulk transfer coefficient for sensible heat (\$C_H\$) (unitless)."), "thermal_conductivity_of_organic_matter" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Thermal conductivity of organic matter (W m⁻¹ K⁻¹). Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "snow_mass_size_relation_coefficient_me" => Dict{String, Any}("value" => 2, "type" => "float", "description" => "Exponent \$m_e\$ in the mass-size relation for snow in the 1-moment microphysics scheme (unitless)."), "ARG2000_pow_1" => Dict{String, Any}("value" => 1.5, "type" => "float", "description" => "Exponent for the term (\$\\zeta / \\eta\$) in an empirical function from Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "a" => Dict{String, Any}("tag" => "LinearRetentionCurve", "value" => 0.00196, "type" => "float", "description" => "Units are 1/m. Bulk modulus of elasticity and slope of potential to volume curve. See also Corcuera, 2002, and Christoffersen, 2016. Computed by 0.2 * 0.0098."), "detrainment_factor" => Dict{String, Any}("value" => 0.51, "type" => "float", "description" => "Scaling constant for detrainment rate (unitless). Source: Cohen et al. (2022), Table 2."), "Mohler2006_S0_warm_ArizonaTestDust" => Dict{String, Any}("value" => 1.03, "type" => "float", "description" => "Onset saturation ratio \$S_0\$ for temperatures > \$T_{thr}\$ for Arizona Test Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "p_over_sulphuric_acid_solution_c5" => Dict{String, Any}("value" => -5814, "type" => "float", "description" => "Coefficient \$c_5\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "sulfate_aerosol_molar_mass" => Dict{String, Any}("value" => 0.132, "type" => "float", "description" => "Molar mass of sulfate aerosol (kg mol⁻¹)."), "kappa_2_sponge" => Dict{String, Any}("value" => 1.0e6, "type" => "float", "description" => "Viscous sponge coefficient (\$\\kappa_2\$) (m² s⁻¹)."), "Chen2022_table_B5_Bl" => Dict{String, Any}("value" => [-2.56289, -0.00513504, 0.608459], "type" => "float", "description" => "Coefficients \$B_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "snow_ventilation_coefficient_a" => Dict{String, Any}("value" => 0.65, "type" => "float", "description" => "Snow ventilation coefficient 'a' for the 1-moment microphysics scheme (unitless)."), "prandtl_number_0_businger" => Dict{String, Any}("value" => 0.74, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Businger universal functions (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "tracer_hyperdiffusion_factor" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Scaling factor for hyperdiffusion of tracers with strong gradients, e.g., precipitation (unitless)."), "snow_ventilation_coefficient_b" => Dict{String, Any}("value" => 0.44, "type" => "float", "description" => "Snow ventilation coefficient 'b' for the 1-moment microphysics scheme (unitless)."), "coefficient_a_m_gryanik" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$a_m\$ for the Gryanik momentum universal function (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "sulfate_aerosol_kappa" => Dict{String, Any}("value" => 0.53, "type" => "float", "description" => "Hygroscopicity parameter \$\\kappa\$ for sulfate aerosol (unitless). Source: DOI: 10.5194/acp-7-1961-2007."), "mixing_length_tke_surf_scale" => Dict{String, Any}("value" => 3.75, "type" => "float", "description" => "Ratio of TKE to squared friction velocity (\$\\kappa_*²\$) in the surface layer for the EDMF mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Table 1."), "length_orbit_semi_major" => Dict{String, Any}("value" => 149597870000, "type" => "float", "description" => "Semi-major axis of the planetary orbit (m). Derived as 1 * `astronomical_unit`."), "surface_layer_fraction" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "The surface layer thickness as a fraction of the planetary boundary layer height (unitless). Source: Frierson et al. (2006), DOI: 10.1175/JAS3753.1."), "c_smag" => Dict{String, Any}("value" => 0.2, "type" => "float", "description" => "Smagorinsky coefficient (unitless)."), "KK2000_autoconversion_coeff_a" => Dict{String, Any}("value" => 2.47, "type" => "float", "description" => "Coefficient \$a\$ in the Khairoutdinov and Kogan (2000) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "held_suarez_T_equator_dry" => Dict{String, Any}("value" => 315, "type" => "float", "description" => "Equatorial temperature for the dry Held-Suarez benchmark (K). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "vol_heat_capacity_organic_matter" => Dict{String, Any}("value" => 2.51e6, "type" => "float", "description" => "Volumetric heat capacity of organic matter (J m⁻³ K⁻¹). Source: Balland and Arp (2005)."), "cloud_liquid_snow_collision_efficiency" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Collision efficiency between cloud liquid water and snow for the 1-moment scheme (unitless)."), "held_suarez_T_equator_wet" => Dict{String, Any}("value" => 294, "type" => "float", "description" => "Equatorial temperature for the moist Held-Suarez benchmark (K). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "rain_drop_size_distribution_coefficient_n0" => Dict{String, Any}("value" => 1.6e7, "type" => "float", "description" => "Rain drop size distribution coefficient \$n_0\$ for the 1-moment microphysics scheme (m⁻⁴)."), "mixing_length_Ri_crit" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Critical gradient Richardson number (\$Ri_{crit}\$) (unitless). Source: Li (2019), Section 6.2."), "B1994_autoconversion_coeff_b" => Dict{String, Any}("value" => 4.7, "type" => "float", "description" => "Coefficient \$b\$ in the Beheng (1994) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "Chen2022_table_B1_ai" => Dict{String, Any}("value" => [0.044612, -0.263166, 4.7178], "type" => "float", "description" => "Coefficients \$a_i\$ for raindrop terminal velocity parameterization (\$mm^{-b_i}\$). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "J_ABIFM_m_ArizonaTestDust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Empirical coefficient 'm' for the immersion freezing rate (\$J_{het}\$) of Arizona Test Dust (unitless)."), "rain_mass_size_relation_coefficient_delm" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_m\$ in the mass-size relation for rain in the 1-moment microphysics scheme (unitless)."), "Farquhar_curvature_parameter" => Dict{String, Any}("value" => 0.9, "type" => "float", "description" => "Curvature parameter for calculating J, a unitless fitting constant. Source: von Caemmerer (2000, 2013); Bernacchi et al. (2003, 2013); von Caemmerer et al. (2009)."), "TC1980_autoconversion_coeff_b" => Dict{String, Any}("value" => -0.3333333333333333, "type" => "float", "description" => "Coefficient \$b\$ (default -1/3) in the Tripoli and Cotton (1980) rain autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "SB2006_cloud_gamma_distribution_coeff_nu" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Gamma distribution coefficient \$\\nu\$ for clouds (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "gustiness" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "A parameter accounting for near-surface gustiness (m s⁻¹)."), "J_ABIFM_c_MiddleEasternDust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Empirical coefficient 'c' for the immersion freezing rate (\$J_{het}\$) of Middle Eastern Dust (unitless)."), "microph_scaling_dep_sub" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling factor for deposition/sublimation in microphysics (unitless)."), "Chen2022_table_B1_b_rho_coeff" => Dict{String, Any}("value" => 0.038465, "type" => "float", "description" => "Density coefficient \$b_{\\rho}\$ for raindrop terminal velocity parameterization (m³ kg⁻¹). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "latent_heat_vaporization_at_reference" => Dict{String, Any}("value" => 2500800, "type" => "float", "description" => "Latent heat of vaporization at the reference temperature (J kg⁻¹)."), "seasalt_aerosol_water_soluble_mass_fraction" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Mass fraction of water-soluble material for sea salt aerosol (unitless)."), "coefficient_d_h_beljaars" => Dict{String, Any}("value" => 0.35, "type" => "float", "description" => "Coefficient \$d_h\$ for the Beljaars heat universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "P3_wet_growth_timescale" => Dict{String, Any}("value" => 100, "type" => "float", "description" => "Timescale for densification due to wet growth in the P3 scheme (s)."), "Frostenberg2023_standard_deviation" => Dict{String, Any}("value" => 1.37, "type" => "float", "description" => "Standard deviation of the log of the ice-nucleating particle concentration (unitless). Source: Eq. (1) in Frostenberg et al. (2023), DOI: 10.5194/acp-23-10883-2023."), "temperature_water_freeze" => Dict{String, Any}("value" => 273.15, "type" => "float", "description" => "Freezing temperature of water (K)."), "total_solar_irradiance" => Dict{String, Any}("value" => 1362, "type" => "float", "description" => "Total solar irradiance (TSI) at the mean orbital distance (W m⁻²)."), "J_ABDINM_c_SaharanDust" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Empirical coefficient 'c' for the deposition nucleation rate (\$J_{het}\$) of Saharan Dust (unitless)."), "holding_capacity_of_water_in_snow" => Dict{String, Any}("value" => 0.08, "type" => "float", "description" => "Volumetric holding capacity of liquid water in a snowpack (unitless)."), "most_stability_exponent_cheng" => Dict{String, Any}("value" => 2.28, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Cheng universal functions (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "Koop2000_max_delta_aw" => Dict{String, Any}("value" => 0.34, "type" => "float", "description" => "Maximum valid water activity difference \$\\Delta a_w\$ for the Koop (2000) homogeneous nucleation parameterization (unitless). Source: DOI: 10.1038/35020537."), "ammonium_sulfate_calibration_coefficient" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Calibration coefficient for ammonium sulfate aerosol in the data-driven cloud droplet number concentration function (unitless)."), "BF1995_mass_exponent_beta" => Dict{String, Any}("value" => 1.9, "type" => "float", "description" => "Exponent \$\\beta_{va}\$ in the power law for mass from vapor diffusion/aggregation in the P3 scheme (unitless). Source: Brown and Francis (1995); Morrison and Milbrandt (2015)."), "coefficient_b_m_holtslag" => Dict{String, Any}("value" => 0.75, "type" => "float", "description" => "Coefficient \$b_m\$ for the Holtslag momentum universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "rain_ventilation_coefficient_a" => Dict{String, Any}("value" => 1.5, "type" => "float", "description" => "Rain ventilation coefficient 'a' for the 1-moment microphysics scheme (unitless)."), "tracer_vertical_diffusion_factor" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Scaling factor for vertical diffusion of tracers with strong gradients, e.g., precipitation (unitless)."), "KnopfAlpert2013_J_ABIFM_c_Kaolinite" => Dict{String, Any}("value" => -10.54758, "type" => "float", "description" => "Coefficient 'c' for immersion freezing rate \$J_{het}\$ of Kaolinite (unitless). Source: Knopf and Alpert (2013), DOI: 10.1039/C3FD00035D."), "gcmdriven_relaxation_minimum_height" => Dict{String, Any}("value" => 3000.0, "type" => "float", "description" => "Start height for relaxation toward the forcing profile in SCM cases (m). Source: Shen et al. (2022)."), "AlpertKnopf2016_J_ABIFM_c_DesertDust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Coefficient 'c' for immersion freezing rate \$J_{het}\$ of Desert Dust (unitless). Source: Alpert and Knopf (2016), DOI: 10.5194/acp-16-2083-2016."), "SB2006_ventilation_factor_coeff_bv" => Dict{String, Any}("value" => 0.308, "type" => "float", "description" => "Coefficient \$b_v\$ in the ventilation factor equation for rain evaporation (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "BarklieGokhale1959_a_parameter" => Dict{String, Any}("value" => 0.65, "type" => "float", "description" => "Mean of parameter 'a' for determining P3 heterogeneous freezing (\$°C⁻¹\$). Source: Barklie & Gokhale (1959), see Pruppacher & Klett (1997), p. 350."), "molar_mass_water" => Dict{String, Any}("value" => 0.01801528, "type" => "float", "description" => "Molar mass of water (kg mol⁻¹)."), "temperature_saturation_adjustment_min" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Minimum temperature difference for unsaturated case in saturation adjustment (K)."), "SB2006_accretion_correcting_function_coeff_tau0" => Dict{String, Any}("value" => 5.0e-5, "type" => "float", "description" => "Coefficient \$\tau_0\$ in the universal function correcting the accretion rate (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "coefficient_c_m_holtslag" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$c_m\$ for the Holtslag momentum universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "M1996_area_coeff_gamma" => Dict{String, Any}("value" => 0.2285, "type" => "float", "description" => "Coefficient \$\\gamma\$ in the power law for the projected area of various ice habits in the P3 scheme (\$\\mu m^{2-\\sigma}\$). See P3 scheme documentation to adjust units. Source: Mitchell (1996); Morrison and Milbrandt (2015)."), "zd_rayleigh" => Dict{String, Any}("value" => 15000.0, "type" => "float", "description" => "Height at which Rayleigh damping begins in the sponge layer (\$z_d\$) (m)."), "most_stability_parameter_gryanik" => Dict{String, Any}("value" => 7.25, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta_a\$) for the Gryanik universal functions (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "delta_S" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Parameter to prevent dividing by zero when computing snow temperature (m)"), "soilCO2_activation_energy" => Dict{String, Any}("value" => 61000.0, "type" => "float", "description" => "Activation energy for soil CO₂ model (J mol⁻¹). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "microphysics_precipitation_fraction_limiter" => Dict{String, Any}("value" => 0.3, "type" => "float", "description" => "Minimum allowed precipitation fraction when using the 'cloud_cover' model (unitless)."), "SB2006_raindrops_size_distribution_coeff_N0_min" => Dict{String, Any}("value" => 250000.0, "type" => "float", "description" => "Minimum value of the raindrops size distribution parameter \$N_0\$ (m⁻⁴). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "B1994_accretion_coeff_A" => Dict{String, Any}("value" => 6.0, "type" => "float", "description" => "Coefficient \$A\$ in the Beheng (1994) accretion parameterization (s⁻¹). Source: DOI: 10.1175/JAS3530.1."), "mam3_nucleation_a_3_ion_induced" => Dict{String, Any}("value" => 0.00136641, "type" => "float", "description" => "Empirical coefficient \$a_{3,i}\$ for ion-induced pure organic nucleation (unitless). Assumes [HOM] is in 10⁷ cm⁻³, \$[n^-]\$ in cm⁻³, and other concentrations have units (TODO). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "KnopfAlpert2013_J_ABIFM_m_Illite" => Dict{String, Any}("value" => 54.48075, "type" => "float", "description" => "Coefficient 'm' for immersion freezing rate \$J_{het}\$ of Illite (unitless). Source: Knopf and Alpert (2013), DOI: 10.1039/C3FD00035D."), "prescribed_cloud_droplet_number_concentration" => Dict{String, Any}("value" => 1.0e8, "type" => "float", "description" => "Prescribed number concentration of cloud droplets (m⁻³)."), "cloud_liquid_water_specific_humidity_autoconversion_threshold" => Dict{String, Any}("value" => 0.0005, "type" => "float", "description" => "Rain formation threshold in terms of specific humidity for the 1-moment microphysics scheme (unitless)."), "soil_heat_capacity" => Dict{String, Any}("value" => 2.0e6, "type" => "float", "description" => "Volumetric heat capacity of the soil (J m⁻³ K⁻¹). Source: SLIM model, Laguë et al. (2019)."), "seasalt_aerosol_density" => Dict{String, Any}("value" => 2170, "type" => "float", "description" => "Density of sea salt aerosol (kg m⁻³)."), "CO2_diffusion_coefficient" => Dict{String, Any}("value" => 1.39e-5, "type" => "float", "description" => "Diffusion coefficient for CO₂ in air at standard temperature and pressure (m² s⁻¹). Source: Ryan et al. (2018), DOI: 10.5194/gmd-11-1909-2018."), "Heymsfield_mu_coeff3" => Dict{String, Any}("value" => 2, "type" => "float", "description" => "Coefficient for shape parameter \$\\mu\$ for ice in the P3 scheme (unitless). Source: Eq. (3) in Morrison and Milbrandt (2015)."), "microphysics_prescribed_precipitation_fraction" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Prescribed value of the precipitation fraction (unitless)."), "Mohler2006_S0_cold_ArizonaTestDust" => Dict{String, Any}("value" => 1.07, "type" => "float", "description" => "Onset saturation ratio \$S_0\$ for temperatures < \$T_{thr}\$ for Arizona Test Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "gcmdriven_relaxation_maximum_height" => Dict{String, Any}("value" => 3500.0, "type" => "float", "description" => "Height at which the relaxation coefficient becomes 1 in SCM cases (m). Source: Shen et al. (2022)."), "SB2006_autoconversion_correcting_function_coeff_a" => Dict{String, Any}("value" => 0.7, "type" => "float", "description" => "Coefficient \$a\$ in the universal function correcting the autoconversion rate (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "mean_anomaly_at_epoch" => Dict{String, Any}("value" => 6.24006014121, "type" => "float", "description" => "Mean anomaly at epoch (radians). Corresponds to 357.52911°."), "KK2000_accretion_coeff_A" => Dict{String, Any}("value" => 67.0, "type" => "float", "description" => "Coefficient \$A\$ in the Khairoutdinov and Kogan (2000) accretion parameterization (\$m^{3b} kg^{-b} s⁻¹\$). Source: DOI: 10.1175/JAS3530.1."), "Chen2022_table_B3_Cs" => Dict{String, Any}("value" => [-0.345387, 0.177362, -0.000427794, 0.00419647], "type" => "float", "description" => "Coefficients \$C_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "China2017_J_deposition_c_Kaolinite" => Dict{String, Any}("value" => -2.2209, "type" => "float", "description" => "Coefficient 'c' for deposition nucleation rate \$J_{het}\$ of Kaolinite (unitless). Source: China et al. (2017), DOI: 10.1002/2016JD025817."), "Horn2012_number_concentration_adjustment_timescale" => Dict{String, Any}("value" => 100, "type" => "float", "description" => "Timescale for 2-moment number concentration adjustment (s). Source: Horn (2012), DOI: 10.5194/gmd-5-345-2012."), "relative_contribution_factor" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Factor of relative contribution for growth respiration, Rgrowth (unitless)."), "vol_heat_capacity_minerals" => Dict{String, Any}("value" => 2.01e6, "type" => "float", "description" => "Volumetric heat capacity of soil minerals excluding quartz (J m⁻³ K⁻¹). Source: Balland and Arp (2005)."), "surface_tension_water" => Dict{String, Any}("value" => 0.072, "type" => "float", "description" => "Surface tension of water (N m⁻¹)."), "plant_S_s" => Dict{String, Any}("tag" => "PlantHydraulicsParameters", "value" => 9.8e-5, "type" => "float", "description" => "Storativity (m3/m3). Computed by 1e-2 * 0.0098."), "rain_minimum_inverse_lambda" => Dict{String, Any}("value" => 1.0e-8, "type" => "float", "description" => "Minimum value for the inverse of the shape parameter \$\\lambda\$ of the rain drop size distribution (m)."), "mam3_nucleation_w_t_n_neutral" => Dict{String, Any}("value" => -4.188065, "type" => "float", "description" => "Empirical coefficient \$w_{t,n}\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "p_over_sulphuric_acid_solution_c6" => Dict{String, Any}("value" => 928.9, "type" => "float", "description" => "Coefficient \$c_6\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "prandtl_number_0_gryanik" => Dict{String, Any}("value" => 0.98, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Gryanik universal functions (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "J_ABDINM_c_Dust" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Default empirical coefficient 'c' for the water-activity-based deposition nucleation rate (\$J_{het}\$) parameterization for dust (unitless)."), "detr_ramp_z_start" => Dict{String, Any}("value" => 20000.0, "type" => "float", "description" => "Start height of the sigmoid ramp for the detrainment top limiter (m)."), "snow_albedo" => Dict{String, Any}("value" => 0.8, "type" => "float", "description" => "Albedo of snow (unitless)."), "Chen2022_table_B5_Al" => Dict{String, Any}("value" => [-0.475897, -0.0023127, 1.12293], "type" => "float", "description" => "Coefficients \$A_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "Thompson2004_c2_Cooper" => Dict{String, Any}("value" => 0.304, "type" => "float", "description" => "Coefficient \$c_2\$ for calculating P3 deposition nucleation (unitless). Source: Thompson et al. (2004), DOI: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2."), "Koop2000_J_hom_coeff2" => Dict{String, Any}("value" => 8502, "type" => "float", "description" => "Coefficient for calculating the homogeneous nucleation rate \$J_{hom}\$ (unitless). Source: Koop et al. (2000), DOI: 10.1038/35020537."), "N_factor_Vcmax25" => Dict{String, Any}("value" => 0.0008, "type" => "float", "description" => "Factor converting Vcmax at 25°C to nitrogen content (mol CO₂ m⁻² s⁻¹ kgC (kgC)⁻¹)."), "coefficient_a_h_gryanik" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$a_h\$ for the Gryanik heat universal function (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "mam3_nucleation_v_b_n_neutral" => Dict{String, Any}("value" => 12.62259, "type" => "float", "description" => "Empirical coefficient \$v_{b,n}\$ for neutral pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "k" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 2.0, "type" => "float", "description" => "Rate at which albedo drops to its minimum value with zenith angle"), "KK2000_autoconversion_coeff_b" => Dict{String, Any}("value" => -1.79, "type" => "float", "description" => "Coefficient \$b\$ in the Khairoutdinov and Kogan (2000) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "J_ABDINM_c_ArizonaTestDust" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Empirical coefficient 'c' for the deposition nucleation rate (\$J_{het}\$) of Arizona Test Dust (unitless)."), "sulfate_aerosol_osmotic_coefficient" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Osmotic coefficient of sulfate aerosol (unitless)."), "prandtl_number_0_beljaars" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Beljaars universal functions (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "mam3_nucleation_k_H2SO4_mixed_organic_sulfuric_acid_factor" => Dict{String, Any}("value" => 3.27e-21, "type" => "float", "description" => "Temperature-dependent factor for mixed organic-sulfuric acid nucleation. Assumes [H₂SO₄] is in 10⁶ cm⁻³ and [BioOxOrg] is in cm⁻³. Source: Riccobono et al. (2014), DOI: 10.1126/science.1243527."), "density_liquid_water" => Dict{String, Any}("value" => 1000, "type" => "float", "description" => "Density of liquid water (kg m⁻³)."), "coefficient_a_h_beljaars" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Coefficient \$a_h\$ for the Beljaars heat universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "O2_activation_energy" => Dict{String, Any}("value" => 36380.0, "type" => "float", "description" => "Energy of activation for oxygen (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "delta_alpha" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.06, "type" => "float", "description" => "Free parameter controlling the snow albedo when θs = 90∘"), "turb_entr_param_vec" => Dict{String, Any}("value" => [0.0, 0.0, 0.0], "type" => "float", "description" => "Data-driven turbulent entrainment parameter vector (unitless)."), "specific_heat_ocean" => Dict{String, Any}("value" => 3991.86795711963, "type" => "float", "description" => "Specific heat of sea water (J kg⁻¹ K⁻¹)."), "mam3_nucleation_exp_MTOH_organic_factor" => Dict{String, Any}("value" => 440, "type" => "float", "description" => "Exponent for temperature-dependent rate of MT oxidation by OH for pure organic nucleation. Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "seasalt_calibration_coefficient" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Calibration coefficient for sea salt aerosol in the data-driven cloud droplet number concentration function (unitless)."), "Chen2022_table_B5_Gl" => Dict{String, Any}("value" => [2.65236, 0.00158269, 259.935], "type" => "float", "description" => "Coefficients \$G_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "p_over_sulphuric_acid_solution_T_max" => Dict{String, Any}("value" => 235, "type" => "float", "description" => "Maximum valid temperature for the H₂SO₄ solution vapor pressure parameterization (K). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "Chen2022_ice_cutoff" => Dict{String, Any}("value" => 0.000625, "type" => "float", "description" => "Cutoff diameter between small and large ice particles in the Chen et al. (2022) parameterization (m)."), "ac_canopy" => Dict{String, Any}("tag" => "BigLeafEnergyModel", "value" => 2500.0, "type" => "float", "description" => "Specific heat per emitting area [J/m^2/K]"), "SB2006_raindrops_max_mass" => Dict{String, Any}("value" => 5.0e-6, "type" => "float", "description" => "Maximum mass of raindrops in the Seifert and Beheng (2006) scheme (kg). Source: DOI: 10.1007/s00703-005-0112-4."), "particle_density_organic_matter" => Dict{String, Any}("value" => 1300.0, "type" => "float", "description" => "Particle density of organic matter (kg m⁻³). Source: Hillel (1982)."), "Heymsfield_mu_cutoff" => Dict{String, Any}("value" => 6, "type" => "float", "description" => "Limiter for shape parameter \$\\mu\$ for ice in the P3 scheme (unitless). Source: Eq. (3) in Morrison and Milbrandt (2015)."), "particle_density_quartz" => Dict{String, Any}("value" => 2660.0, "type" => "float", "description" => "Particle density of quartz (kg m⁻³). Source: Hillel (1982); De Vries (1966)."), "wavelength_per_PAR_photon" => Dict{String, Any}("value" => 5.0e-7, "type" => "float", "description" => "Typical wavelength of a photon in the Photosynthetically Active Radiation (PAR) band (m)."), "minimum_updraft_velocity" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Minimum updraft-environment vertical velocity difference (m s⁻¹)."), "TC1980_autoconversion_coeff_a" => Dict{String, Any}("value" => 2.3333333333333335, "type" => "float", "description" => "Coefficient \$a\$ (default 7/3) in the Tripoli and Cotton (1980) rain autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "liquid_water_specific_humidity_calibration_coefficient" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Calibration coefficient for liquid water specific humidity in the data-driven cloud droplet number concentration function (unitless)."), "oxygen_diffusion_coefficient" => Dict{String, Any}("value" => 1.67, "type" => "float", "description" => "Diffusion coefficient of oxygen in air (dimensionless). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "Mohler2006_a_cold_DesertDust" => Dict{String, Any}("value" => 2.35, "type" => "float", "description" => "Coefficient 'a' for temperatures < \$T_{thr}\$ for Desert Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "planck_constant" => Dict{String, Any}("value" => 6.626e-34, "type" => "float", "description" => "Planck's constant (h) (J s)."), "J_ABDINM_m_AsianDust" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Empirical coefficient 'm' for the deposition nucleation rate (\$J_{het}\$) of Asian Dust (unitless)."), "Heymsfield_mu_coeff2" => Dict{String, Any}("value" => 0.8, "type" => "float", "description" => "Coefficient for shape parameter \$\\mu\$ for ice in the P3 scheme (unitless). Source: Eq. (3) in Morrison and Milbrandt (2015)."), "temperature_saturation_adjustment_max" => Dict{String, Any}("value" => 1000, "type" => "float", "description" => "Maximum temperature for saturation adjustment (K)."), "mixing_length_tke_surf_flux_coeff" => Dict{String, Any}("value" => 2.5, "type" => "float", "description" => "Coefficient multiplying flux in the \$u_*^3\$ surface flux formulation of TKE (\$C_{flux}\$) (unitless)."), "Koop2000_J_hom_coeff4" => Dict{String, Any}("value" => 29180, "type" => "float", "description" => "Coefficient for calculating the homogeneous nucleation rate \$J_{hom}\$ (unitless). Source: Koop et al. (2000), DOI: 10.1038/35020537."), "SB2006_raindrops_breakup_coeff_kappabr" => Dict{String, Any}("value" => 2300, "type" => "float", "description" => "Coefficient \$\\kappa_{br}\$ in the raindrops breakup rate equation (m⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "EDMF_thermodynamics_quadrature_order" => Dict{String, Any}("value" => 3, "type" => "integer", "description" => "Number of 1D quadrature points for SGS sampling in EDMF."), "D_0_diffusion" => Dict{String, Any}("value" => 5, "type" => "float", "description" => "Coefficient \$D_0\$ in the DecayWithHeightDiffusion vertical diffusion scheme (m² s⁻¹)."), "drag_layer_vertical_extent" => Dict{String, Any}("value" => 0.7, "type" => "float", "description" => "Vertical extent of the drag layer as a fraction of total pressure depth (unitless). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "detr_inv_tau" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Inverse timescale for detrainment (s⁻¹)."), "rain_drop_length_scale" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Rain drop length scale for the 1-moment microphysics scheme (m)."), "angular_velocity_planet_rotation" => Dict{String, Any}("value" => 7.2921159e-5, "type" => "float", "description" => "Angular velocity of planetary rotation (\$\\Omega\$) (rad s⁻¹)."), "water_refractive_index" => Dict{String, Any}("value" => 1.34, "type" => "float", "description" => "Relative refractive index of water and air for broadband ocean surface albedo calculation (unitless). Source: Jin et al. (2011)."), "rain_terminal_velocity_size_relation_coefficient_chiv" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_v\$ in the terminal velocity-size relation for rain in the 1-moment microphysics scheme (unitless)."), "Mohler2006_maximum_allowed_Si" => Dict{String, Any}("value" => 1.35, "type" => "float", "description" => "Maximum allowed supersaturation over ice, \$S_{i,max}\$ (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "EDMF_min_area" => Dict{String, Any}("value" => 1.0e-5, "type" => "float", "description" => "Minimum area fraction per updraft (unitless)."), "electron_transport_maintenance" => Dict{String, Any}("value" => 0.05336251, "type" => "float", "description" => "Constant describing the cost of maintaining electron transport (unitless)."), "B1994_autoconversion_coeff_d_high" => Dict{String, Any}("value" => 9.9, "type" => "float", "description" => "Coefficient \$d_{high}\$ in the Beheng (1994) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "coefficient_a_h_cheng" => Dict{String, Any}("value" => 5.3, "type" => "float", "description" => "Coefficient \$a_h\$ for the Cheng heat universal function (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "BF1995_mass_coeff_alpha" => Dict{String, Any}("value" => 7.38e-11, "type" => "float", "description" => "Coefficient \$\\alpha_{va}\$ in the power law for mass from vapor diffusion/aggregation in the P3 scheme (\$g \\mu m^{-\\beta_{va}}\$). See P3 scheme documentation to adjust units. Source: Brown and Francis (1995); Morrison and Milbrandt (2015)."), "Koop2000_J_hom_coeff1" => Dict{String, Any}("value" => -906.7, "type" => "float", "description" => "Coefficient for calculating the homogeneous nucleation rate \$J_{hom}\$ (unitless). Source: Koop et al. (2000), DOI: 10.1038/35020537."), "SST_mean" => Dict{String, Any}("value" => 300, "type" => "float", "description" => "Mean sea surface temperature (SST) for RCEMIP surface conditions (K). Source: Wing et al. (2018)."), "SB2006_raindrops_equilibrium_mean_diameter" => Dict{String, Any}("value" => 0.0009, "type" => "float", "description" => "Equilibrium mean diameter of raindrops for computing the breakup rate (m). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "Γstar_activation_energy" => Dict{String, Any}("value" => 37830.0, "type" => "float", "description" => "Energy of activation for \$\\Gamma^*\$ (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "TC1980_accretion_coeff_A" => Dict{String, Any}("value" => 4.7, "type" => "float", "description" => "Coefficient \$A\$ in the Tripoli and Cotton (1980) accretion parameterization (s⁻¹). Source: DOI: 10.1175/JAS3530.1."), "anomalistic_year_length" => Dict{String, Any}("value" => 31558464, "type" => "float", "description" => "Length of an anomalistic year (s). Derived as 365.25 * `day`."), "Alpert2022_J_deposition_c_Ferrihydrite" => Dict{String, Any}("value" => 0.0516, "type" => "float", "description" => "Coefficient 'c' for deposition nucleation rate \$J_{het}\$ of Ferrihydrite (unitless). Source: Alpert et al. (2022), DOI: 10.1039/D1EA00077B."), "SB2006_rain_distribution_coeff_nu" => Dict{String, Any}("value" => -0.66666666666667, "type" => "float", "description" => "Gamma distribution coefficient \$\\nu\$ for rain (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "microphysics_model_precipitation_fraction" => Dict{String, Any}("value" => "prescribed", "type" => "string", "description" => "Precipitation fraction model choice for 1-moment microphysics with EDMF. Options: 'prescribed' (default), 'cloud_cover'."), "mam3_nucleation_p_b_i_ion_induced" => Dict{String, Any}("value" => 3.373738, "type" => "float", "description" => "Empirical coefficient \$p_{b,i}\$ for ion-induced pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³ and negative ion concentration \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "isobaric_specific_heat_vapor" => Dict{String, Any}("value" => 1859, "type" => "float", "description" => "Isobaric specific heat of water vapor (J kg⁻¹ K⁻¹)."), "snow_terminal_velocity_size_relation_coefficient_delv" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_v\$ in the terminal velocity-size relation for snow in the 1-moment microphysics scheme (unitless)."), "snow_terminal_velocity_size_relation_coefficient_chiv" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_v\$ in the terminal velocity-size relation for snow in the 1-moment microphysics scheme (unitless)."), "SST_wavelength_latitude" => Dict{String, Any}("value" => 54, "type" => "float", "description" => "Wavelength of the SST sinusoid for RCEMIP sphere models (degrees latitude). Source: Wing et al. (2018)."), "Chen2022_table_B1_bi" => Dict{String, Any}("value" => [2.2955, 2.2955, 1.1451], "type" => "float", "description" => "Coefficients \$b_i\$ for raindrop terminal velocity parameterization (unitless). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "alpha_0" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.64, "type" => "float", "description" => "Free parameter controlling the minimum snow albedo"), "coefficient_a_h_holtslag" => Dict{String, Any}("value" => 0.7, "type" => "float", "description" => "Coefficient \$a_h\$ for the Holtslag heat universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "sulfate_aerosol_density" => Dict{String, Any}("value" => 1770, "type" => "float", "description" => "Density of sulfate aerosol (kg m⁻³)."), "snow_emissivity" => Dict{String, Any}("value" => 0.97, "type" => "float", "description" => "Emissivity of snow (unitless). Source: CLM5 Technical Note."), "entr_coeff" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient for the \$w/z\$ term in the entrainment closure (unitless)."), "entrainment_area_limiter_power" => Dict{String, Any}("value" => 10.0, "type" => "float", "description" => "Exponential decay constant in the detrainment area limiter (unitless)."), "snow_cover_fraction_crit_threshold" => Dict{String, Any}("value" => 0.2, "type" => "float", "description" => "Critical threshold for determining snow cover fraction (m)."), "longitude_perihelion" => Dict{String, Any}("value" => 4.938188299449, "type" => "float", "description" => "Longitude of perihelion (radians). Corresponds to 282.9373°."), "gcmdriven_scalar_relaxation_timescale" => Dict{String, Any}("value" => 86400.0, "type" => "float", "description" => "Relaxation timescale for scalars (temperature, humidity) toward the forcing profile in SCM cases (s). Source: Shen et al. (2022)."), "EDMF_thermodynamics_moisture_model" => Dict{String, Any}("value" => "equilibrium", "type" => "string", "description" => "Moisture model for EDMF thermodynamics. Options: 'equilibrium' (default), 'nonequilibrium'."), "entropy_reference_temperature" => Dict{String, Any}("value" => 298.15, "type" => "float", "description" => "Reference temperature for entropy calculations (K)."), "B1994_autoconversion_coeff_N_0" => Dict{String, Any}("value" => 2.0e8, "type" => "float", "description" => "Coefficient \$N_0\$ in the Beheng (1994) autoconversion parameterization (m⁻³). Source: DOI: 10.1175/JAS3530.1."), "mam3_nucleation_p_b_n_neutral" => Dict{String, Any}("value" => 3.95451, "type" => "float", "description" => "Empirical coefficient \$p_{b,n}\$ for neutral pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "detr_vertdiv_coeff" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient for the vertical divergence term in the detrainment closure (unitless)."), "Chen2022_table_B5_Hl" => Dict{String, Any}("value" => [-0.346044, -7.17829e-11, -1.24394e20], "type" => "float", "description" => "Coefficients \$H_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "soilCO2_pre_exponential_factor" => Dict{String, Any}("value" => 194000.0, "type" => "float", "description" => "Pre-exponential factor for soil CO₂ model (kg C m⁻³ s⁻¹). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "kinematic_viscosity_of_air" => Dict{String, Any}("value" => 1.6e-5, "type" => "float", "description" => "Kinematic viscosity of air (m² s⁻¹)."), "pressure_triple_point" => Dict{String, Any}("value" => 611.657, "type" => "float", "description" => "Triple point pressure of water (Pa)."), "dark_respiration_factor" => Dict{String, Any}("value" => 0.015, "type" => "float", "description" => "Constant factor appearing in the dark respiration term (unitless). Source: Bonan (2019)."), "stem_leaf_nitrogen_ratio" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Ratio of stem nitrogen to top leaf nitrogen (unitless)."), "snow_aspect_ratio_coefficient" => Dict{String, Any}("value" => 0.3333333333333333, "type" => "float", "description" => "Power law coefficient for terminal velocity dependence on snow aspect ratio (unitless). Source: Chen et al. (2022)."), "detr_coeff" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Coefficient for the \$w\$ term in the detrainment closure (unitless)."), "J_ABDINM_m_ArizonaTestDust" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Empirical coefficient 'm' for the deposition nucleation rate (\$J_{het}\$) of Arizona Test Dust (unitless)."), "microph_scaling_acnv" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling factor for autoconversion in microphysics (unitless)."), "alpha_rayleigh_uh" => Dict{String, Any}("value" => 0.0, "type" => "float", "description" => "Coefficient \$\\alpha_{uh}\$ for Rayleigh damping on horizontal velocity (s⁻¹)."), "kelvin_25C" => Dict{String, Any}("value" => 298.15, "type" => "float", "description" => "Reference temperature equal to 25°C (K)."), "diagnostic_covariance_coeff" => Dict{String, Any}("value" => 2.1, "type" => "float", "description" => "Prefactor in the turbulent production term of the EDMF covariance equation (unitless)."), "TC1980_autoconversion_coeff_me_liq" => Dict{String, Any}("value" => 3.0, "type" => "float", "description" => "Mass-size relation exponent \$m_e\$ in the Tripoli and Cotton (1980) scheme (unitless). Source: DOI: 10.1175/JAS3530.1."), "SB2006_rain_evaporation_coeff_beta" => Dict{String, Any}("value" => 0.266, "type" => "float", "description" => "Coefficient \$\\beta\$ in the fallspeed relation for rain evaporation (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "soil_C_substrate_diffusivity" => Dict{String, Any}("value" => 3.17, "type" => "float", "description" => "Diffusivity of soil C substrate in liquid (unitless). Source: Ryan et al. (2018), DOI: 10.5194/gmd-11-1909-2018."), "mixing_length_Prandtl_number_0" => Dict{String, Any}("value" => 0.74, "type" => "float", "description" => "Turbulent Prandtl number in neutral conditions (\$Pr_{t,0}\$) (unitless). Source: Lopez-Gomez et al. (2020), Table 1."), "coefficient_b_h_gryanik" => Dict{String, Any}("value" => 0.4, "type" => "float", "description" => "Coefficient \$b_h\$ for the Gryanik heat universal function (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "light_speed" => Dict{String, Any}("value" => 299792458, "type" => "float", "description" => "Speed of light in vacuum (c) (m s⁻¹)."), "B1994_autoconversion_coeff_a" => Dict{String, Any}("value" => -1.7, "type" => "float", "description" => "Coefficient \$a\$ in the Beheng (1994) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "potential_temp_vertical_gradient" => Dict{String, Any}("value" => 10, "type" => "float", "description" => "Vertical gradient of potential temperature with height (K m⁻¹). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "Mohler2006_a_warm_DesertDust" => Dict{String, Any}("value" => 0.43, "type" => "float", "description" => "Coefficient 'a' for temperatures > \$T_{thr}\$ for Desert Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "coefficient_d_m_holtslag" => Dict{String, Any}("value" => 0.35, "type" => "float", "description" => "Coefficient \$d_m\$ for the Holtslag momentum universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "coefficient_a_m_holtslag" => Dict{String, Any}("value" => 0.7, "type" => "float", "description" => "Coefficient \$a_m\$ for the Holtslag momentum universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "most_stability_parameter_holtslag" => Dict{String, Any}("value" => 4.0, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta_a\$) for the Holtslag universal functions (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "liquid_cloud_effective_radius" => Dict{String, Any}("value" => 1.4e-5, "type" => "float", "description" => "Assumed constant effective radius for liquid cloud droplets (m)."), "KnopfAlpert2013_J_ABIFM_m_Kaolinite" => Dict{String, Any}("value" => 54.58834, "type" => "float", "description" => "Coefficient 'm' for immersion freezing rate \$J_{het}\$ of Kaolinite (unitless). Source: Knopf and Alpert (2013), DOI: 10.1039/C3FD00035D."), "mam3_nucleation_k_MTO3_organic_factor" => Dict{String, Any}("value" => 8.05e-16, "type" => "float", "description" => "Factor for temperature-dependent rate of MT oxidation by O₃ for pure organic nucleation. Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "snow_flake_length_scale" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Snow particle length scale for the 1-moment microphysics scheme (m)."), "KK2000_accretion_coeff_b" => Dict{String, Any}("value" => -1.3, "type" => "float", "description" => "Coefficient \$b\$ in the Khairoutdinov and Kogan (2000) accretion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "seasalt_aerosol_kappa" => Dict{String, Any}("value" => 1.12, "type" => "float", "description" => "Hygroscopicity parameter \$\\kappa\$ for sea salt aerosol (unitless). Source: DOI: 10.5194/acp-7-1961-2007."), "emissivity_bare_soil" => Dict{String, Any}("value" => 0.96, "type" => "float", "description" => "Emissivity of bare soil (unitless). Source: CLM5 Technical Note (2020)."), "mam3_nucleation_Y_MTOH_percent" => Dict{String, Any}("value" => 0.012, "type" => "float", "description" => "Molar yield of highly oxygenated molecules (HOM) from monoterpene (MT) oxidation by OH for pure organic nucleation (%). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "MERRA2_seasalt_aerosol_bin03_radius" => Dict{String, Any}("value" => 1.119e-6, "type" => "float", "description" => "Dry particle radius for sea salt aerosol in bin 03 of the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "ARG2000_f_coeff_1" => Dict{String, Any}("value" => 0.5, "type" => "float", "description" => "Scaling coefficient for an empirical function in Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "canopy_scalar_roughness_length" => Dict{String, Any}("value" => 0.2, "type" => "float", "description" => "Roughness length for scalars (m)"), "maximum_dry_soil_layer_depth" => Dict{String, Any}("value" => 0.015, "type" => "float", "description" => "Maximum depth of the dry soil layer that can develop under evaporation (m). Source: Shokri and Or (2011), DOI: 10.1029/2010WR010284"), "mam3_nucleation_w_b_n_neutral" => Dict{String, Any}("value" => -0.007066146, "type" => "float", "description" => "Empirical coefficient \$w_{b,n}\$ for neutral pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "microph_scaling_accr" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling factor for accretion in microphysics (unitless)."), "Chen2022_table_B5_El" => Dict{String, Any}("value" => [0.00639847, 0.00906454, -0.108232], "type" => "float", "description" => "Coefficients \$E_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "Chen2022_table_B3_Fs" => Dict{String, Any}("value" => [-3.35641, 0.0156199, 0.765337], "type" => "float", "description" => "Coefficients \$F_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "latent_heat_sublimation_at_reference" => Dict{String, Any}("value" => 2834400, "type" => "float", "description" => "Latent heat of sublimation at the reference temperature (J kg⁻¹)."), "rain_cross_section_size_relation_coefficient_dela" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_a\$ in the cross section-size relation for rain in the 1-moment microphysics scheme (unitless)."), "SB2006_raindrops_size_distribution_coeff_lambda_min" => Dict{String, Any}("value" => 1000.0, "type" => "float", "description" => "Minimum value of the raindrops size distribution parameter \$\\lambda\$ (m⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "critical_snow_fraction" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.0, "type" => "float", "description" => "Fraction of critical amount of snow at which sublimation β begins to decay to zero (unitless)"), "MERRA2_seasalt_aerosol_bin01_radius" => Dict{String, Any}("value" => 7.9e-8, "type" => "float", "description" => "Dry particle radius for sea salt aerosol in bin 01 of the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "bucket_z_0b" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.001, "type" => "float", "description" => "Roughness length for scalars (m)"), "min_area_limiter_power" => Dict{String, Any}("value" => 10, "type" => "float", "description" => "Exponent for the minimum area limiter in entrainment (unitless)."), "Alpert2022_J_deposition_m_Ferrihydrite" => Dict{String, Any}("value" => 12.3525, "type" => "float", "description" => "Coefficient 'm' for deposition nucleation rate \$J_{het}\$ of Ferrihydrite (unitless). Source: Alpert et al. (2022), DOI: 10.1039/D1EA00077B."), "entr_mult_limiter_coeff" => Dict{String, Any}("value" => 0.0, "type" => "float", "description" => "Exponent for the multiplicative entrainment limiter of the form \$(1 - area)^c\$ (unitless)."), "Thompson2004_c1_Cooper" => Dict{String, Any}("value" => 0.005, "type" => "float", "description" => "Coefficient \$c_1\$ for calculating P3 deposition nucleation (unitless). Source: Thompson et al. (2004), DOI: 10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2."), "prandtl_number_0_grachev" => Dict{String, Any}("value" => 0.98, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Grachev universal functions (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "mam3_nucleation_exp_MTO3_organic_factor" => Dict{String, Any}("value" => -640, "type" => "float", "description" => "Exponent for temperature-dependent rate of MT oxidation by O₃ for pure organic nucleation. Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "coefficient_b_h_cheng" => Dict{String, Any}("value" => 1.1, "type" => "float", "description" => "Coefficient \$b_h\$ for the Cheng heat universal function (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "snow_flake_size_distribution_coefficient_mu" => Dict{String, Any}("value" => 4.36e9, "type" => "float", "description" => "Snow size distribution coefficient \$\\mu\$ for the 1-moment microphysics scheme (m⁻⁴)."), "bucket_beta_decay_exponent" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 1.0, "type" => "float", "description" => "Exponent used in β decay (unitless)"), "kersten_number_alpha" => Dict{String, Any}("value" => 0.24, "type" => "float", "description" => "A unitless empirical constant (\$\\alpha\$) used in computing the Kersten number. Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "Frostenberg2023_b_coefficient" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient 'b' for the ice-nucleating particle concentration (°C⁻¹). Source: Eq. (1) in Frostenberg et al. (2023), DOI: 10.5194/acp-23-10883-2023."), "KnopfAlpert2013_J_ABIFM_c_Illite" => Dict{String, Any}("value" => -10.66873, "type" => "float", "description" => "Coefficient 'c' for immersion freezing rate \$J_{het}\$ of Illite (unitless). Source: Knopf and Alpert (2013), DOI: 10.1039/C3FD00035D."), "mixing_length_Prandtl_maximum" => Dict{String, Any}("value" => 10, "type" => "float", "description" => "Maximum allowed turbulent Prandtl number (unitless)."), "Alpert2022_J_deposition_c_Feldspar" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Coefficient 'c' for deposition nucleation rate \$J_{het}\$ of Feldspar (unitless). Source: Alpert et al. (2022), DOI: 10.1039/D1EA00077B."), "planet_radius" => Dict{String, Any}("value" => 6371000, "type" => "float", "description" => "Mean radius of the planet (m)."), "mixing_length_l_min" => Dict{String, Any}("value" => 10, "type" => "float", "description" => "Lower limit for the mixing length (m)."), "mam3_nucleation_a_n_neutral" => Dict{String, Any}("value" => 1.5703478e-6, "type" => "float", "description" => "Empirical coefficient \$a_n\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "coefficient_b_h_grachev" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$b_h\$ for the Grachev heat universal function (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "microph_scaling_melt" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling factor for melting in microphysics (unitless)."), "SST_delta" => Dict{String, Any}("value" => 1.25, "type" => "float", "description" => "Amplitude of the SST sinusoid for RCEMIP surface conditions (K). Note: value is \$2 \times\$ amplitude. Source: Wing et al. (2018)."), "coefficient_a_m_grachev" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$a_m\$ for the Grachev momentum universal function (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "rain_drop_drag_coefficient" => Dict{String, Any}("value" => 0.55, "type" => "float", "description" => "Rain drop drag coefficient for the 1-moment microphysics scheme (unitless)."), "SB2006_autoconversion_correcting_function_coeff_A" => Dict{String, Any}("value" => 400.0, "type" => "float", "description" => "Coefficient \$A\$ in the universal function correcting the autoconversion rate (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "temperature_factor_soil_hydraulic_conductivity" => Dict{String, Any}("value" => 0.0264, "type" => "float", "description" => "An empirical parameter for adjusting soil hydraulic conductivity based on temperature (K⁻¹)."), "beta" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.4, "type" => "float", "description" => "Rate governing how snow albedo changes with snow density, a proxy for grain size and liquid water content, ∈ [0,1]"), "max_area_limiter_power" => Dict{String, Any}("value" => 10, "type" => "float", "description" => "Exponent for the maximum area limiter in detrainment (unitless)."), "gamma" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 0.08, "type" => "float", "description" => "Free parameter controlling the snow cover scaling change with resolution (1/degrees)"), "canopy_emissivity" => Dict{String, Any}("value" => 0.97, "type" => "float", "description" => "Emissivity of the canopy (unitless)."), "coefficient_a_m_cheng" => Dict{String, Any}("value" => 6.1, "type" => "float", "description" => "Coefficient \$a_m\$ for the Cheng momentum universal function (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "O2_michaelis_menten" => Dict{String, Any}("value" => 0.2784, "type" => "float", "description" => "Michaelis-Menten parameter for O₂ at 25°C (mol mol⁻¹). Source: Bernacchi et al. (2001)."), "specific_leaf_density" => Dict{String, Any}("value" => 0.05, "type" => "float", "description" => "Specific leaf density (kg C m⁻² leaf)."), "mixing_length_smin_ub" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Lower limit for the smooth minimum function in the mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Eq. 40."), "ARG2000_pow_2" => Dict{String, Any}("value" => 0.75, "type" => "float", "description" => "Exponent for the term (\$S_m^2 / (\\zeta + 3 \\eta)\$) in an empirical function from Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "most_stability_exponent_holtslag" => Dict{String, Any}("value" => 2.14, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Holtslag universal functions (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "J_ABIFM_m_Dust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Default empirical coefficient 'm' for the water-activity-based immersion freezing rate (\$J_{het}\$) parameterization for dust (unitless)."), "coefficient_b_m_cheng" => Dict{String, Any}("value" => 2.5, "type" => "float", "description" => "Coefficient \$b_m\$ for the Cheng momentum universal function (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "China2017_J_deposition_m_Kaolinite" => Dict{String, Any}("value" => 27.551, "type" => "float", "description" => "Coefficient 'm' for deposition nucleation rate \$J_{het}\$ of Kaolinite (unitless). Source: China et al. (2017), DOI: 10.1002/2016JD025817."), "snow_autoconversion_timescale" => Dict{String, Any}("value" => 100, "type" => "float", "description" => "Snow autoconversion timescale for the 1-moment microphysics scheme (s)."), "SB2006_rain_evaporation_coeff_alpha" => Dict{String, Any}("value" => 159, "type" => "float", "description" => "Coefficient \$\\alpha\$ in the fallspeed relation for rain evaporation (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "SAI" => Dict{String, Any}("tag" => "PrescribedSiteAreaIndex", "value" => 0.0, "type" => "float", "description" => "The constant stem area index (SAI; m2/m2)"), "rain_mass_size_relation_coefficient_me" => Dict{String, Any}("value" => 3, "type" => "float", "description" => "Exponent \$m_e\$ in the mass-size relation for rain in the 1-moment microphysics scheme (unitless)."), "orbit_obliquity_at_epoch" => Dict{String, Any}("value" => 0.408979125113246, "type" => "float", "description" => "Obliquity of the ecliptic at epoch (radians). Corresponds to 23.43278°."), "coefficient_b_m_grachev" => Dict{String, Any}("value" => 0.7692307692307693, "type" => "float", "description" => "Derived coefficient \$b_m\$ for the Grachev momentum universal function, calculated as \$a_m / 6.5\$ (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "snow_aspect_ratio" => Dict{String, Any}("value" => 0.15, "type" => "float", "description" => "Assumed aspect ratio for snow in the 1-moment microphysics scheme (unitless)."), "CL1993_local_rime_density_linear_coeff" => Dict{String, Any}("value" => 114, "type" => "float", "description" => "Linear coefficient for local rime density in the P3 scheme (kg m⁻³ (m² s⁻¹ °C⁻¹)⁻¹). Source: Cober and List (1993), DOI: 10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2."), "mam3_nucleation_k_MTOH_organic_factor" => Dict{String, Any}("value" => 1.2e-11, "type" => "float", "description" => "Factor for temperature-dependent rate of MT oxidation by OH for pure organic nucleation. Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "coefficient_b_h_beljaars" => Dict{String, Any}("value" => 0.667, "type" => "float", "description" => "Coefficient \$b_h\$ for the Beljaars heat universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "detr_buoy_coeff" => Dict{String, Any}("value" => 0.12, "type" => "float", "description" => "Coefficient for the \$b/w^2\$ term in the detrainment closure (unitless). Source: Tan et al. (2018), Eq. 27."), "Chen2022_table_B1_ci" => Dict{String, Any}("value" => [0.0, 0.184325, 0.184325], "type" => "float", "description" => "Coefficients \$c_i\$ for raindrop terminal velocity parameterization (mm⁻¹). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "relative_diffusivity_of_water_vapor" => Dict{String, Any}("value" => 1.6, "type" => "float", "description" => "Relative diffusivity of water vapor compared to heat (unitless)."), "J_ABDINM_m_Dust" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Default empirical coefficient 'm' for the water-activity-based deposition nucleation rate (\$J_{het}\$) parameterization for dust (unitless)."), "snow_cross_section_size_relation_coefficient_chia" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_a\$ in the cross section-size relation for snow in the 1-moment microphysics scheme (unitless)."), "bucket_soil_conductivity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 1.5, "type" => "float", "description" => "Conductivity of the soil (W/K/m); constant"), "mam3_stdev_accum" => Dict{String, Any}("value" => 1.8, "type" => "float", "description" => "Geometric standard deviation for the accumulation mode in the MAM3 scheme (unitless). Source: Liu et al. (2012), DOI: 10.5194/gmd-5-709-2012."), "TC1980_autoconversion_coeff_D" => Dict{String, Any}("value" => 3268.0, "type" => "float", "description" => "Coefficient \$D\$ in the Tripoli and Cotton (1980) rain autoconversion parameterization (\$m^{3b} s⁻¹\$). Source: DOI: 10.1175/JAS3530.1."), "TC1980_autoconversion_coeff_r_0" => Dict{String, Any}("value" => 7.0e-6, "type" => "float", "description" => "Threshold size \$r_0\$ in the Tripoli and Cotton (1980) rain autoconversion parameterization (m). Source: DOI: 10.1175/JAS3530.1."), "SB2006_accretion_correcting_function_coeff_c" => Dict{String, Any}("value" => 4, "type" => "float", "description" => "Coefficient \$c\$ in the universal function correcting the accretion rate (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "Frostenberg2023_a_coefficient" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient 'a' for the ice-nucleating particle concentration (m³). Source: Eq. (1) in Frostenberg et al. (2023), DOI: 10.5194/acp-23-10883-2023."), "rain_mass_size_relation_coefficient_chim" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_m\$ in the mass-size relation for rain in the 1-moment microphysics scheme (unitless)."), "beta_0" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 1.77, "type" => "float", "description" => "he value of β_scf at 1.5∘ horizontal resolution (unitless)"), "cloud_ice_crystals_length_scale" => Dict{String, Any}("value" => 1.0e-5, "type" => "float", "description" => "Cloud ice particle length scale for the 1-moment microphysics scheme (m)."), "bucket_soil_heat_capacity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 2.0e6, "type" => "float", "description" => "Volumetric heat capacity of the soil (J/m^3/K); constant"), "J_ABIFM_c_AsianDust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Empirical coefficient 'c' for the immersion freezing rate (\$J_{het}\$) of Asian Dust (unitless)."), "von_karman_constant" => Dict{String, Any}("value" => 0.4, "type" => "float", "description" => "The von Kármán constant (\$\\kappa\$), a dimensionless constant describing the logarithmic velocity profile near a boundary."), "mean_sea_level_pressure" => Dict{String, Any}("value" => 101325, "type" => "float", "description" => "Mean sea level pressure (\$p_{MSL}\$) (Pa)."), "particle_density_minerals" => Dict{String, Any}("value" => 2650.0, "type" => "float", "description" => "Particle density of soil minerals (kg m⁻³). Source: Hillel (1982)."), "KK2000_autoconversion_coeff_A" => Dict{String, Any}("value" => 7.42e13, "type" => "float", "description" => "Coefficient \$A\$ in the Khairoutdinov and Kogan (2000) autoconversion parameterization (\$m^{3(b+c)} s⁻¹ kg^{-c}\$). Source: DOI: 10.1175/JAS3530.1."), "thermal_conductivity_of_soil_minerals" => Dict{String, Any}("value" => 2.5, "type" => "float", "description" => "Thermal conductivity of soil minerals, excluding quartz (W m⁻¹ K⁻¹). Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "orbit_eccentricity_at_epoch" => Dict{String, Any}("value" => 0.016708634, "type" => "float", "description" => "Orbital eccentricity at epoch (unitless)."), "coefficient_d_h_holtslag" => Dict{String, Any}("value" => 0.35, "type" => "float", "description" => "Coefficient \$d_h\$ for the Holtslag heat universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "SB2006_collection_kernel_coeff_kcc" => Dict{String, Any}("value" => 4.44e9, "type" => "float", "description" => "Cloud-cloud collection kernel constant \$k_{cc}\$ in the Seifert and Beheng (2006) scheme (\$m^3 kg⁻² s⁻¹\$). Source: DOI: 10.1007/s00703-005-0112-4."), "SST_wavelength" => Dict{String, Any}("value" => 6.0e6, "type" => "float", "description" => "Wavelength of the SST sinusoid for RCEMIP box models (m). Source: Wing et al. (2018)."), "temperature_surface_reference" => Dict{String, Any}("value" => 290, "type" => "float", "description" => "Surface temperature in a reference temperature profile (K)."), "isobaric_specific_heat_dry_air" => Dict{String, Any}("value" => 1004.5, "type" => "float", "description" => "Isobaric specific heat of dry air (J kg⁻¹ K⁻¹)."), "J_ABDINM_c_Illite" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Empirical coefficient 'c' for the deposition nucleation rate (\$J_{het}\$) of Illite (unitless)."), "Koop2000_min_delta_aw" => Dict{String, Any}("value" => 0.26, "type" => "float", "description" => "Minimum valid water activity difference \$\\Delta a_w\$ for the Koop (2000) homogeneous nucleation parameterization (unitless). Source: DOI: 10.1038/35020537."), "diffusivity_of_water_vapor" => Dict{String, Any}("value" => 2.26e-5, "type" => "float", "description" => "Diffusivity of water vapor in air (m² s⁻¹)."), "snow_cross_section_size_relation_coefficient" => Dict{String, Any}("value" => 2, "type" => "float", "description" => "Exponent in the cross section-size relation for snow in the 1-moment microphysics scheme (unitless)."), "mam3_nucleation_u_b_n_neutral" => Dict{String, Any}("value" => 9.702973, "type" => "float", "description" => "Empirical coefficient \$u_{b,n}\$ for neutral pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "mam3_nucleation_u_t_i_ion_induced" => Dict{String, Any}("value" => -23.8002, "type" => "float", "description" => "Empirical coefficient \$u_{t,i}\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "thermal_conductivity_of_air" => Dict{String, Any}("value" => 0.024, "type" => "float", "description" => "Thermal conductivity of air (J m⁻¹ s⁻¹ K⁻¹)."), "SB2006_collection_kernel_coeff_krr" => Dict{String, Any}("value" => 7.12, "type" => "float", "description" => "Rain-rain collection kernel constant \$k_{rr}\$ in the Seifert and Beheng (2006) scheme (\$m^3 kg⁻¹ s⁻¹\$). Source: DOI: 10.1007/s00703-005-0112-4."), "p_over_sulphuric_acid_solution_c4" => Dict{String, Any}("value" => 8.19, "type" => "float", "description" => "Coefficient \$c_4\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "SB2006_rain_distribution_coeff_mu" => Dict{String, Any}("value" => 0.33333333333333, "type" => "float", "description" => "Gamma distribution coefficient \$\\mu\$ for rain (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "LD2004_R_6C_coeff" => Dict{String, Any}("value" => 7.5, "type" => "float", "description" => "Coefficient in the Liu and Daum (2004) autoconversion parameterization (\$\\mu m^{3/2} kg^{1/6} m^{-1/2}\$). Source: DOI: 10.1175/JAS3530.1."), "pressure_normalmode_buoy_coeff1" => Dict{String, Any}("value" => 0.12, "type" => "float", "description" => "Pressure buoyancy coefficient in the perturbation pressure closure (unitless). Source: He et al. (2022), Eq. 34."), "psi_63" => Dict{String, Any}("tag" => "Weibull", "value" => -408.16326530612247, "type" => "float", "description" => "The absolute water potential in xylem (or xylem water potential) at which ∼63% of maximum xylem conductance is lost (Liu, 2020). Computed by -4 / 0.0098. Holtzman's original parameter value is -4 MPa"), "specific_humidity_precipitation_threshold" => Dict{String, Any}("value" => 5.0e-6, "type" => "float", "description" => "Precipitation formation threshold in terms of specific humidity for the 0-moment microphysics scheme (unitless)."), "live_stem_wood_coeff" => Dict{String, Any}("value" => 0.01, "type" => "float", "description" => "Live stem wood coefficient (kg C m⁻³)."), "thermal_conductivity_of_quartz" => Dict{String, Any}("value" => 8.0, "type" => "float", "description" => "Thermal conductivity of quartz (W m⁻¹ K⁻¹). Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "Mohler2006_S0_warm_DesertDust" => Dict{String, Any}("value" => 1.17, "type" => "float", "description" => "Onset saturation ratio \$S_0\$ for temperatures > \$T_{thr}\$ for Desert Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "R_sb" => Dict{String, Any}("tag" => "TOPMODELRunoff", "value" => 1.484e-7, "type" => "float", "description" => "Units are m/s"), "O2_michaelis_constant" => Dict{String, Any}("value" => 0.004, "type" => "float", "description" => "Michaelis constant for O₂ (m³ m⁻³). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "coefficient_b_h_businger" => Dict{String, Any}("value" => 9.0, "type" => "float", "description" => "Coefficient \$b_h\$ for the Businger heat universal function (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "pow_icenuc" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Exponent in the ice nucleation parameterization (unitless)."), "mixing_length_l_max" => Dict{String, Any}("value" => 1.0e6, "type" => "float", "description" => "Upper limit for the length scale in the mixing length closure (m). Source: Lopez-Gomez et al. (2020)."), "AlpertKnopf2016_J_ABIFM_m_DesertDust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Coefficient 'm' for immersion freezing rate \$J_{het}\$ of Desert Dust (unitless). Source: Alpert and Knopf (2016), DOI: 10.5194/acp-16-2083-2016."), "ice_impedance_omega" => Dict{String, Any}("value" => 7.0, "type" => "float", "description" => "A unitless impedance parameter (\$\\Omega\$) used to adjust soil hydraulic conductivity for ice presence. Source: Lundin, J. Hydrol. 118:289-310 (1990)."), "Linear_J_hom_coeff1" => Dict{String, Any}("value" => -68.5532830403637, "type" => "float", "description" => "Intercept coefficient for a linear fit to the Koop (2000) \$J_{hom}\$ parameterization (unitless). Source: DOI: 10.1038/35020537."), "MERRA2_sulfate_aerosol_radius" => Dict{String, Any}("value" => 3.5e-7, "type" => "float", "description" => "Dry particle radius for sulfate aerosol in the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "land_bucket_capacity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.2, "type" => "float", "description" => "Capacity of the land bucket (m)"), "updraft_mixing_frac" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Fraction of updraft air used for buoyancy mixing in the entrainment/detrainment formulation (unitless). Source: Cohen et al. (2022), Table 2."), "alpha_rayleigh_w" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Coefficient \$\\alpha_w\$ for Rayleigh damping on vertical velocity (s⁻¹)."), "moisture_stress_ref_water_pressure" => Dict{String, Any}("value" => -2.0e6, "type" => "float", "description" => "Reference water pressure for the moisture stress factor (Pa). Source: Tuzet et al. (2003)."), "SB2006_ventilation_factor_coeff_av" => Dict{String, Any}("value" => 0.78, "type" => "float", "description" => "Coefficient \$a_v\$ in the ventilation factor equation for rain evaporation (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "snow_mass_size_relation_coefficient_delm" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_m\$ in the mass-size relation for snow in the 1-moment microphysics scheme (unitless)."), "potential_temperature_reference_pressure" => Dict{String, Any}("value" => 100000.0, "type" => "float", "description" => "Reference pressure for potential temperature calculations (\$p_0\$) (Pa)."), "Chen2022_table_B3_As" => Dict{String, Any}("value" => [-0.263503, 0.00174079, 0.0378769], "type" => "float", "description" => "Coefficients \$A_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "day" => Dict{String, Any}("value" => 86400, "type" => "float", "description" => "Length of a day (s)."), "EDMF_surface_area" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Combined updraft surface area fraction (unitless). The surface area for each updraft is `surface_area / N_updrafts`. Source: Cohen et al. (2020), Table 2."), "z0" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 0.106, "type" => "float", "description" => "The value used to normalize snow depth when computing snow cover fraction (m)"), "snow_scalar_roughness_length" => Dict{String, Any}("value" => 0.08, "type" => "float", "description" => "Scalar roughness length for snow (m), assuming friction velocity \$u_*\$ of 5 m s⁻¹. Source: CLM5 Technical Note."), "mam3_nucleation_w_t_i_ion_induced" => Dict{String, Any}("value" => 0.227413, "type" => "float", "description" => "Empirical coefficient \$w_{t,i}\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "snow_apparent_density" => Dict{String, Any}("value" => 100, "type" => "float", "description" => "The apparent density of snow particles (kg m⁻³). Source: DOI: 10.1029/2020JD034157."), "cloud_liquid_rain_collision_efficiency" => Dict{String, Any}("value" => 0.8, "type" => "float", "description" => "Collision efficiency between cloud liquid water and rain for the 1-moment scheme (unitless)."), "KK2000_accretion_coeff_a" => Dict{String, Any}("value" => 1.15, "type" => "float", "description" => "Coefficient \$a\$ in the Khairoutdinov and Kogan (2000) accretion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "J_ABIFM_m_SaharanDust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Empirical coefficient 'm' for the immersion freezing rate (\$J_{het}\$) of Saharan Dust (unitless)."), "p_over_sulphuric_acid_solution_c7" => Dict{String, Any}("value" => 1876.7, "type" => "float", "description" => "Coefficient \$c_7\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "entropy_dry_air" => Dict{String, Any}("value" => 6864.8, "type" => "float", "description" => "Specific entropy of dry air at the reference temperature and pressure (J kg⁻¹ K⁻¹)."), "x0" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.2, "type" => "float", "description" => "Value of relative snow density ρ_snow/ρ_liq at which snow density begins to decrease albedo, ∈ [0,1]"), "coefficient_b_m_gryanik" => Dict{String, Any}("value" => 0.3, "type" => "float", "description" => "Coefficient \$b_m\$ for the Gryanik momentum universal function (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "EDMF_max_area" => Dict{String, Any}("value" => 0.9, "type" => "float", "description" => "Maximum area fraction per updraft (unitless)."), "K_sat_plant" => Dict{String, Any}("tag" => "Weibull", "value" => 7.0e-8, "type" => "float", "description" => "Maximum Water conductivity in the above-ground plant compartments (m/s) at saturation. Units are m / s."), "snow_density" => Dict{String, Any}("value" => 200, "type" => "float", "description" => "Density of snow (kg m⁻³)."), "Chen2022_table_B3_Es" => Dict{String, Any}("value" => [-0.156593, 0.0189334, 0.1377817], "type" => "float", "description" => "Coefficients \$E_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "temperature_saturation_adjustment_init_min" => Dict{String, Any}("value" => 150, "type" => "float", "description" => "Minimum temperature for saturation adjustment initialization (K)."), "mam3_nucleation_v_t_i_ion_induced" => Dict{String, Any}("value" => 37.03029, "type" => "float", "description" => "Empirical coefficient \$v_{t,i}\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "rain_snow_collision_efficiency" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Collision efficiency between rain and snow for the 1-moment scheme (unitless)."), "Heymsfield_mu_coeff1" => Dict{String, Any}("value" => 0.00191, "type" => "float", "description" => "Coefficient for shape parameter \$\\mu\$ for ice in the P3 scheme (\$m^{0.8}\$). Source: Eq. (3) in Morrison and Milbrandt (2015)."), "temperature_min_reference" => Dict{String, Any}("value" => 220, "type" => "float", "description" => "Minimum temperature in a reference temperature profile (K)."), "entr_inv_tau" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Inverse timescale for entrainment (s⁻¹)."), "J_ABDINM_c_AsianDust" => Dict{String, Any}("value" => 0.7716, "type" => "float", "description" => "Empirical coefficient 'c' for the deposition nucleation rate (\$J_{het}\$) of Asian Dust (unitless)."), "density_ocean_reference" => Dict{String, Any}("value" => 1035, "type" => "float", "description" => "Reference density of sea water (kg m⁻³)."), "intercellular_O2_concentration" => Dict{String, Any}("value" => 0.209, "type" => "float", "description" => "Intercellular O₂ concentration, assumed constant (mol mol⁻¹)."), "CO2_michaelis_menten" => Dict{String, Any}("value" => 0.0004049, "type" => "float", "description" => "Michaelis-Menten parameter for CO₂ at 25°C (mol mol⁻¹). Source: Bernacchi et al. (2001)."), "ARG2000_g_coeff_2" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Scaling coefficient for an empirical function in Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "MERRA2_seasalt_aerosol_bin05_radius" => Dict{String, Any}("value" => 7.772e-6, "type" => "float", "description" => "Dry particle radius for sea salt aerosol in bin 05 of the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "Linear_J_hom_coeff2" => Dict{String, Any}("value" => 255.9271249999972, "type" => "float", "description" => "Slope coefficient for a linear fit to the Koop (2000) \$J_{hom}\$ parameterization (unitless). Source: DOI: 10.1038/35020537."), "universal_gas_constant" => Dict{String, Any}("value" => 8.3144598, "type" => "float", "description" => "Universal gas constant (R) (J mol⁻¹ K⁻¹)."), "CO2_activation_energy" => Dict{String, Any}("value" => 79430.0, "type" => "float", "description" => "Energy of activation for CO₂ (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "ARG2000_f_coeff_2" => Dict{String, Any}("value" => 2.5, "type" => "float", "description" => "Scaling coefficient for an empirical function in Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "snow_momentum_roughness_length" => Dict{String, Any}("value" => 0.0024, "type" => "float", "description" => "Momentum roughness length for snow (m). Source: CLM5 Technical Note."), "gcmdriven_momentum_relaxation_timescale" => Dict{String, Any}("value" => 21600.0, "type" => "float", "description" => "Relaxation timescale for horizontal winds toward the forcing profile in Single Column Model (SCM) cases (s). Source: Shen et al. (2022)."), "reference_seasalt_aerosol_mass_concentration" => Dict{String, Any}("value" => 1.0e-8, "type" => "float", "description" => "Normalization factor for sea salt aerosol mass concentration in the data-driven CDNC function (kg kg⁻¹)."), "soil_conductivity" => Dict{String, Any}("value" => 1.5, "type" => "float", "description" => "Constant conductivity of the soil (W m⁻¹ K⁻¹). Source: SLIM model, Laguë et al. (2019)."), "coefficient_a_h_businger" => Dict{String, Any}("value" => 4.7, "type" => "float", "description" => "Coefficient \$a_h\$ for the Businger heat universal function (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "Chen2022_table_B3_Gs" => Dict{String, Any}("value" => [-0.0309715, 1.55054, 0.518349], "type" => "float", "description" => "Coefficients \$G_s\$ for ice terminal velocity parameterization. Source: Table B3 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "avogadro_constant" => Dict{String, Any}("value" => 6.02214076e23, "type" => "float", "description" => "Avogadro's constant (\$N_A\$) (mol⁻¹)."), "alpha_rayleigh_sgs_tracer" => Dict{String, Any}("value" => 0.0, "type" => "float", "description" => "Coefficient \$\\alpha_{sgs_tracer}\$ for Rayleigh damping on subgrid-scale tracer (s⁻¹)"), "Rd_activation_energy" => Dict{String, Any}("value" => 46390.0, "type" => "float", "description" => "Energy of activation for dark respiration, Rd (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "p_over_sulphuric_acid_solution_c3" => Dict{String, Any}("value" => 12, "type" => "float", "description" => "Coefficient \$c_3\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "coefficient_c_h_holtslag" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$c_h\$ for the Holtslag heat universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "astronomical_unit" => Dict{String, Any}("value" => 149597870000, "type" => "float", "description" => "Astronomical unit (AU) (m)."), "turbulent_entrainment_factor" => Dict{String, Any}("value" => 0.075, "type" => "float", "description" => "Scaling constant for turbulent entrainment rate (unitless). Source: Cohen et al. (2022), Table 2."), "most_stability_parameter_cheng" => Dict{String, Any}("value" => 4.5, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta\$) for the Cheng universal functions (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "bucket_z_0m" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.01, "type" => "float", "description" => "Roughness length for momentum (m)"), "f_over" => Dict{String, Any}("tag" => "TOPMODELRunoff", "value" => 3.28, "type" => "float", "description" => "Units are 1/m"), "isobaric_specific_heat_ice" => Dict{String, Any}("value" => 2070.0, "type" => "float", "description" => "Isobaric specific heat of ice (J kg⁻¹ K⁻¹)."), "SB2006_reference_air_density" => Dict{String, Any}("value" => 1.225, "type" => "float", "description" => "Reference air density at surface conditions (kg m⁻³). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "ARG2000_g_coeff_1" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Scaling coefficient for an empirical function in Abdul-Razzak and Ghan (2000) (unitless). Source: DOI: 10.1029/1999JD901161."), "rain_ventilation_coefficient_b" => Dict{String, Any}("value" => 0.53, "type" => "float", "description" => "Rain ventilation coefficient 'b' for the 1-moment microphysics scheme (unitless)."), "SB2006_raindrops_min_mass" => Dict{String, Any}("value" => 2.6e-10, "type" => "float", "description" => "Minimum mass of raindrops in the Seifert and Beheng (2006) scheme (kg). Source: DOI: 10.1007/s00703-005-0112-4."), "mam3_nucleation_u_b_i_ion_induced" => Dict{String, Any}("value" => -11.48166, "type" => "float", "description" => "Empirical coefficient \$u_{b,i}\$ for ion-induced pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³ and negative ion concentration \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "stefan_boltzmann_constant" => Dict{String, Any}("value" => 5.67e-8, "type" => "float", "description" => "Stefan-Boltzmann constant (\$\\sigma\$) (W m⁻² K⁻⁴)."), "mam3_nucleation_p_t_i_ion_induced" => Dict{String, Any}("value" => 3.138719, "type" => "float", "description" => "Empirical coefficient \$p_{t,i}\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "density_ice_water" => Dict{String, Any}("value" => 916.7, "type" => "float", "description" => "Density of water ice (kg m⁻³)."), "cloud_ice_mass_size_relation_coefficient_chim" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_m\$ in the mass-size relation for cloud ice in the 1-moment microphysics scheme (unitless)."), "rain_cross_section_size_relation_coefficient_chia" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_a\$ in the cross section-size relation for rain in the 1-moment microphysics scheme (unitless)."), "J_ABDINM_m_Illite" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Empirical coefficient 'm' for the deposition nucleation rate (\$J_{het}\$) of Illite (unitless)."), "EDMF_thermodynamics_diagnostic_covar_limiter" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Regularization epsilon for the denominator in diagnostic covariance calculations (unitless)."), "M1996_area_exponent_sigma" => Dict{String, Any}("value" => 1.88, "type" => "float", "description" => "Exponent \$\\sigma\$ in the power law for the projected area of various ice habits in the P3 scheme (unitless). Source: Mitchell (1996); Morrison and Milbrandt (2015)."), "LD2004_E_0_coeff" => Dict{String, Any}("value" => 1.08e10, "type" => "float", "description" => "Coefficient \$E_0\$ in the Liu and Daum (2004) autoconversion parameterization (\$m^3 kg^{-2} s⁻¹\$). Source: DOI: 10.1175/JAS3530.1."), "wet_snow_hydraulic_conductivity" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Hydraulic conductivity of wet snow (m s⁻¹)."), "Chen2022_table_B5_Fl" => Dict{String, Any}("value" => [0.515453, -0.0725042, -1.8681e19], "type" => "float", "description" => "Coefficients \$F_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "mam3_nucleation_p_A_i_ion_induced" => Dict{String, Any}("value" => 3.071246, "type" => "float", "description" => "Empirical coefficient \$p_{A,i}\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "P3_constant_slope_parameterization_value" => Dict{String, Any}("value" => 3.0, "type" => "float", "description" => "Value of \$\\mu\$ for the constant slope parameterization in the P3 scheme (unitless)."), "O2_volume_fraction" => Dict{String, Any}("value" => 0.209, "type" => "float", "description" => "Volumetric fraction of O₂ in the soil air (dimensionless). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "most_stability_exponent_beljaars" => Dict{String, Any}("value" => 2.04, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Beljaars universal functions (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "cloud_ice_apparent_density" => Dict{String, Any}("value" => 500, "type" => "float", "description" => "The apparent density of cloud ice particles (kg m⁻³). Source: DOI: 10.1029/2020JD034157."), "equator_pole_temperature_gradient_dry" => Dict{String, Any}("value" => 60, "type" => "float", "description" => "Equator-to-pole temperature gradient for the dry benchmark (K). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "entrainment_factor" => Dict{String, Any}("value" => 0.13, "type" => "float", "description" => "Scaling constant for entrainment rate (unitless). Source: Cohen et al. (2022), Table 2."), "cloud_ice_mass_size_relation_coefficient_delm" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_m\$ in the mass-size relation for cloud ice in the 1-moment microphysics scheme (unitless)."), "gas_constant_vapor" => Dict{String, Any}("value" => 461.5, "type" => "float", "description" => "Gas constant for water vapor (J kg⁻¹ K⁻¹)."), "MERRA2_seasalt_aerosol_bin02_radius" => Dict{String, Any}("value" => 3.16e-7, "type" => "float", "description" => "Dry particle radius for sea salt aerosol in bin 02 of the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "most_stability_exponent_gryanik" => Dict{String, Any}("value" => 3.62, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Gryanik universal functions (unitless). Source: Gryanik et al. (2020), DOI: 10.1175/JAS-D-19-0255.1."), "SB2006_raindrops_terminal_velocity_coeff_bR" => Dict{String, Any}("value" => 10.3, "type" => "float", "description" => "Coefficient \$b_R\$ in the raindrops terminal velocity equation (m s⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "SB2006_raindrops_size_distribution_coeff_N0_max" => Dict{String, Any}("value" => 2.0e7, "type" => "float", "description" => "Maximum value of the raindrops size distribution parameter \$N_0\$ (m⁻⁴). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "mam3_nucleation_v_b_i_ion_induced" => Dict{String, Any}("value" => 25.49469, "type" => "float", "description" => "Empirical coefficient \$v_{b,i}\$ for ion-induced pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³ and negative ion concentration \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "optics_lookup_temperature_min" => Dict{String, Any}("value" => 160, "type" => "float", "description" => "Minimum temperature in the lookup table for optical properties in RRTMGP (K)."), "f_plane_coriolis_frequency" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coriolis frequency on an f-plane (s⁻¹)."), "SB2006_raindrops_terminal_velocity_coeff_aR" => Dict{String, Any}("value" => 9.65, "type" => "float", "description" => "Coefficient \$a_R\$ in the raindrops terminal velocity equation (m s⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "vol_heat_capacity_quartz" => Dict{String, Any}("value" => 2.01e6, "type" => "float", "description" => "Volumetric heat capacity of quartz (J m⁻³ K⁻¹). Source: Balland and Arp (2005)."), "condensation_evaporation_timescale" => Dict{String, Any}("value" => 10.0, "type" => "float", "description" => "Condensation/evaporation timescale for non-equilibrium microphysics (s)."), "mam3_nucleation_a_i_ion_induced" => Dict{String, Any}("value" => 0.0048314, "type" => "float", "description" => "Empirical coefficient \$a_i\$ for ion-induced pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄], [NH₃] are in 10⁶ cm⁻³ and \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "coefficient_a_h_grachev" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$a_h\$ for the Grachev heat universal function (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "CL1993_local_rime_density_constant_coeff" => Dict{String, Any}("value" => 51, "type" => "float", "description" => "Constant coefficient for local rime density in the P3 scheme (kg m⁻³). Source: Cober and List (1993), DOI: 10.1175/1520-0469(1993)050<1591:MOTHAM>2.0.CO;2."), "cloud_ice_snow_collision_efficiency" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Collision efficiency between cloud ice and snow for the 1-moment scheme (unitless)."), "EDMF_thermodynamics_sgs" => Dict{String, Any}("value" => "mean", "type" => "string", "description" => "Environmental sub-grid scale model for EDMF. Options: 'mean' (default), 'quadrature'."), "bucket_capacity_fraction" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.75, "type" => "float", "description" => "Fraction of bucket capacity at which evaporation β begins to decay to zero (unitless)"), "snow_mass_size_relation_coefficient_chim" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient \$\\chi_m\$ in the mass-size relation for snow in the 1-moment microphysics scheme (unitless)."), "coefficient_a_m_beljaars" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Coefficient \$a_m\$ for the Beljaars momentum universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "idealized_ocean_albedo" => Dict{String, Any}("value" => 0.38, "type" => "float", "description" => "Ocean surface albedo for idealized simulations (unitless). Source: O'Gorman and Schneider (2008)."), "SB2006_raindrops_self-collection_coeff_d" => Dict{String, Any}("value" => -5, "type" => "float", "description" => "Coefficient \$d\$ in the raindrops self-collection rate equation (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "mixing_length_static_stab_coeff" => Dict{String, Any}("value" => 0.4, "type" => "float", "description" => "Static stability coefficient (\$c_b\$) for the EDMF mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Table 1."), "entrainment_scale" => Dict{String, Any}("value" => 0.0004, "type" => "float", "description" => "Dimensional constant scaling the logistic function argument in the entrainment/detrainment dry term. Source: Cohen et al. (2022), Table 2."), "MERRA2_seasalt_aerosol_bin04_radius" => Dict{String, Any}("value" => 2.818e-6, "type" => "float", "description" => "Dry particle radius for sea salt aerosol in bin 04 of the MERRA-2 dataset (m). Source: DOI: 10.5067/LTVB4GPCOTK2."), "cloud_ice_size_distribution_coefficient_n0" => Dict{String, Any}("value" => 2.0e7, "type" => "float", "description" => "Cloud ice size distribution parameter \$n_0\$ for the 1-moment microphysics scheme (m⁻⁴)."), "Chen2022_table_B5_Cl" => Dict{String, Any}("value" => [-0.756064, 0.935922, -1.70952], "type" => "float", "description" => "Coefficients \$C_l\$ for ice terminal velocity parameterization. Source: Table B5 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "prandtl_number_0_cheng" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Cheng universal functions (unitless). Source: Cheng et al. (2005), DOI: 10.1007/s10546-004-1425-4."), "SB2006_collection_kernel_coeff_kapparr" => Dict{String, Any}("value" => 60.7, "type" => "float", "description" => "Collection kernel constant \$\\kappa_{rr}\$ in the Seifert and Beheng (2006) scheme (\$kg^{-1/3}\$). Source: DOI: 10.1007/s00703-005-0112-4."), "Mohler2006_a_cold_ArizonaTestDust" => Dict{String, Any}("value" => 9.2, "type" => "float", "description" => "Coefficient 'a' for temperatures < \$T_{thr}\$ for Arizona Test Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "coefficient_b_m_businger" => Dict{String, Any}("value" => 15.0, "type" => "float", "description" => "Coefficient \$b_m\$ for the Businger momentum universal function (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "coefficient_b_h_holtslag" => Dict{String, Any}("value" => 0.75, "type" => "float", "description" => "Coefficient \$b_h\$ for the Holtslag heat universal function (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "SB2006_cloud_droplets_min_mass" => Dict{String, Any}("value" => 4.2e-15, "type" => "float", "description" => "Minimum mass of cloud droplets in the Seifert and Beheng (2006) scheme (kg). Source: DOI: 10.1007/s00703-005-0112-4."), "coefficient_c_h_beljaars" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$c_h\$ for the Beljaars heat universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "thermodynamics_temperature_reference" => Dict{String, Any}("value" => 273.16, "type" => "float", "description" => "Reference temperature for thermodynamics (K)."), "J_ABIFM_m_AsianDust" => Dict{String, Any}("value" => 22.62, "type" => "float", "description" => "Empirical coefficient 'm' for the immersion freezing rate (\$J_{het}\$) of Asian Dust (unitless)."), "mam3_nucleation_Y_MTO3_percent" => Dict{String, Any}("value" => 0.029, "type" => "float", "description" => "Molar yield of highly oxygenated molecules (HOM) from monoterpene (MT) oxidation by O₃ for pure organic nucleation (%). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "mixing_length_Prandtl_number_scale" => Dict{String, Any}("value" => 4.076923076923077, "type" => "float", "description" => "Cospectral budget factor for turbulent Prandtl number (\$\\omega_{pr}\$) for the EDMF mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Eq. 36."), "H_diffusion" => Dict{String, Any}("value" => 8000, "type" => "float", "description" => "Height scale \$H\$ in the DecayWithHeightDiffusion vertical diffusion scheme (m)."), "entr_vertdiv_coeff" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient for the vertical divergence term in the entrainment closure (unitless)."), "mam3_nucleation_w_b_i_ion_induced" => Dict{String, Any}("value" => 0.1810722, "type" => "float", "description" => "Empirical coefficient \$w_{b,i}\$ for ion-induced pure binary (H₂SO₄-H₂O) nucleation (unitless). Assumes [H₂SO₄] is in 10⁶ cm⁻³ and negative ion concentration \$[n^-]\$ is in cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "cloud_ice_specific_humidity_autoconversion_threshold" => Dict{String, Any}("value" => 1.0e-6, "type" => "float", "description" => "Snow autoconversion threshold in terms of specific humidity for the 1-moment microphysics scheme (unitless)."), "Mohler2006_a_warm_ArizonaTestDust" => Dict{String, Any}("value" => 4.7, "type" => "float", "description" => "Coefficient 'a' for temperatures > \$T_{thr}\$ for Arizona Test Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "low_water_pressure_sensitivity" => Dict{String, Any}("value" => 5.0e-6, "type" => "float", "description" => "Sensitivity of stomatal conductance to low water pressure (Pa⁻¹)."), "thermal_conductivity_of_water_ice" => Dict{String, Any}("value" => 2.21, "type" => "float", "description" => "Thermal conductivity of water ice at its freezing temperature (W m⁻¹ K⁻¹). Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "p_over_sulphuric_acid_solution_c1" => Dict{String, Any}("value" => 23.306, "type" => "float", "description" => "Coefficient \$c_1\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "entrainment_sorting_power" => Dict{String, Any}("value" => 2.0, "type" => "float", "description" => "Sorting power for the moisture term in the entrainment/detrainment formulation (unitless). Source: Cohen et al. (2022), Table 2."), "mam3_nucleation_a_5" => Dict{String, Any}("value" => 0.186303, "type" => "float", "description" => "Empirical coefficient \$a_5\$ for pure organic nucleation (unitless). Assumes [HOM] is in 10⁷ cm⁻³ and other concentrations have units (TODO). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "equator_pole_temperature_gradient_wet" => Dict{String, Any}("value" => 65, "type" => "float", "description" => "Equator-to-pole temperature gradient for the moist benchmark (K). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "thermal_conductivity_of_liquid_water" => Dict{String, Any}("value" => 0.57, "type" => "float", "description" => "Thermal conductivity of liquid water at 10°C (W m⁻¹ K⁻¹). Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "rain_autoconversion_timescale" => Dict{String, Any}("value" => 1000.0, "type" => "float", "description" => "Rain formation timescale for the 1-moment microphysics scheme (s)."), "B1994_autoconversion_coeff_C" => Dict{String, Any}("value" => 3.0e34, "type" => "float", "description" => "Coefficient \$C\$ in the Beheng (1994) autoconversion parameterization (\$m^{3(c+b-1)} s⁻¹ kg^{-(b-1)}\$). Source: DOI: 10.1175/JAS3530.1."), "coefficient_c_m_beljaars" => Dict{String, Any}("value" => 5.0, "type" => "float", "description" => "Coefficient \$c_m\$ for the Beljaars momentum universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "mam3_nucleation_p_t_n_neutral" => Dict{String, Any}("value" => 2.891024, "type" => "float", "description" => "Empirical coefficient \$p_{t,n}\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "alpha_snow" => Dict{String, Any}("tag" => "PrescribedBaregroundAlbedo", "value" => 0.8, "type" => "float"), "kersten_number_beta" => Dict{String, Any}("value" => 18.3, "type" => "float", "description" => "A unitless empirical constant (\$\\beta\$) used in computing the Kersten number. Source: Balland and Arp, J. Environ. Eng. Sci. 4: 549-558 (2005)."), "min_stomatal_conductance" => Dict{String, Any}("value" => 0.0001, "type" => "float", "description" => "Minimum stomatal conductance (mol m⁻² s⁻¹)."), "seasalt_aerosol_ion_number" => Dict{String, Any}("value" => 2, "type" => "float", "description" => "Number of ions that sea salt dissociates into when dissolved in water (unitless)."), "ice_snow_threshold_radius" => Dict{String, Any}("value" => 6.25e-5, "type" => "float", "description" => "Threshold particle radius separating ice and snow for the 1-moment microphysics scheme (m)."), "most_stability_parameter_businger" => Dict{String, Any}("value" => 2.5, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta_a\$) for the Businger universal functions (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "zd_viscous" => Dict{String, Any}("value" => 15000.0, "type" => "float", "description" => "Height at which viscous damping begins in the sponge layer (m)."), "SB2006_cloud_gamma_distribution_coeff_mu" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Gamma distribution coefficient \$\\mu\$ for clouds (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "adiabatic_exponent_dry_air" => Dict{String, Any}("value" => 0.28571428571, "type" => "float", "description" => "Adiabatic exponent for dry air (\$\\kappa_d\$), derived from \$R_d/c_{pd}\$ or 2/7 (unitless)."), "epoch_time" => Dict{String, Any}("value" => Dates.DateTime("2000-01-01T11:58:56.816"), "type" => "datetime", "description" => "J2000 epoch (Jan 1, 2000 11:58:56.816 UTC) as a DateTime"), "precipitation_timescale" => Dict{String, Any}("value" => 1000, "type" => "float", "description" => "Precipitation formation timescale for the 0-moment microphysics scheme (s)."), "mam3_nucleation_a_1_neutral" => Dict{String, Any}("value" => 0.0400097, "type" => "float", "description" => "Empirical coefficient \$a_{1,n}\$ for neutral pure organic nucleation (unitless). Assumes [HOM] is in 10⁷ cm⁻³ and other concentrations have units (TODO). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "B1994_autoconversion_coeff_d_low" => Dict{String, Any}("value" => 3.9, "type" => "float", "description" => "Coefficient \$d_{low}\$ in the Beheng (1994) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "isobaric_specific_heat_liquid" => Dict{String, Any}("value" => 4181, "type" => "float", "description" => "Isobaric specific heat of liquid water (J kg⁻¹ K⁻¹)."), "updraft_number" => Dict{String, Any}("value" => 1, "type" => "integer", "description" => "Number of updrafts in the EDMF scheme."), "sublimation_deposition_timescale" => Dict{String, Any}("value" => 10.0, "type" => "float", "description" => "Deposition/sublimation timescale for non-equilibrium microphysics (s)."), "critical_snow_water_equivalent" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.2, "type" => "float", "description" => "Critical σSWE amount (m) where surface transitions from to snow-covered"), "rain_cross_section_size_relation_coefficient_ae" => Dict{String, Any}("value" => 2, "type" => "float", "description" => "Exponent \$a_e\$ in the cross section-size relation for rain in the 1-moment microphysics scheme (unitless)."), "Jmax_activation_energy" => Dict{String, Any}("value" => 43540.0, "type" => "float", "description" => "Energy of activation for Jmax (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "cloud_ice_rain_collision_efficiency" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Collision efficiency between cloud ice and rain for the 1-moment scheme (unitless)."), "Koop2000_J_hom_coeff3" => Dict{String, Any}("value" => 26924, "type" => "float", "description" => "Coefficient for calculating the homogeneous nucleation rate \$J_{hom}\$ (unitless). Source: Koop et al. (2000), DOI: 10.1038/35020537."), "Vcmax_activation_energy" => Dict{String, Any}("value" => 65330.0, "type" => "float", "description" => "Energy of activation for Vcmax (J mol⁻¹). Source: Bonan (2019), Table 11.2; Bernacchi et al. (2001, 2003)."), "CO2_compensation_point_25c" => Dict{String, Any}("value" => 4.275e-5, "type" => "float", "description" => "CO₂ compensation point (\$\\Gamma^*\$) at 25°C (mol mol⁻¹). Source: Bernacchi et al. (2001)."), "mam3_nucleation_v_t_n_neutral" => Dict{String, Any}("value" => 1.203451, "type" => "float", "description" => "Empirical coefficient \$v_{t,n}\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "Variable_time_scale_autoconversion_coeff_alpha" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "Exponent of number density in the function describing the autoconversion timescale (unitless)."), "B1994_autoconversion_coeff_c" => Dict{String, Any}("value" => -3.3, "type" => "float", "description" => "Coefficient \$c\$ in the Beheng (1994) autoconversion parameterization (unitless). Source: DOI: 10.1175/JAS3530.1."), "temperature_triple_point" => Dict{String, Any}("value" => 273.16, "type" => "float", "description" => "Triple point temperature of water (K)."), "reference_dust_aerosol_mass_concentration" => Dict{String, Any}("value" => 1.0e-8, "type" => "float", "description" => "Normalization factor for dust aerosol mass concentration in the data-driven CDNC function (kg kg⁻¹)."), "snow_cross_section_size_relation_coefficient_dela" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_a\$ in the cross section-size relation for snow in the 1-moment microphysics scheme (unitless)."), "C_E" => Dict{String, Any}("value" => 0.0044, "type" => "float", "description" => "Coefficient used in the simple vertical diffusion scheme (\$C_E\$) (unitless)."), "entr_param_vec" => Dict{String, Any}("value" => [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], "type" => "float", "description" => "Data-driven entrainment parameter vector (unitless)."), "p_over_sulphuric_acid_solution_T_min" => Dict{String, Any}("value" => 185, "type" => "float", "description" => "Minimum valid temperature for the H₂SO₄ solution vapor pressure parameterization (K). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "most_stability_exponent_businger" => Dict{String, Any}("value" => 4.42, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Businger universal functions (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "sulfate_aerosol_ion_number" => Dict{String, Any}("value" => 3, "type" => "float", "description" => "Number of ions that sulfate dissociates into when dissolved in water (unitless)."), "mam3_nucleation_a_4_ion_induced" => Dict{String, Any}("value" => 1.56588, "type" => "float", "description" => "Empirical coefficient \$a_{4,i}\$ for ion-induced pure organic nucleation (unitless). Assumes [HOM] is in 10⁷ cm⁻³, \$[n^-]\$ in cm⁻³, and other concentrations have units (TODO). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "most_stability_exponent_grachev" => Dict{String, Any}("value" => 2.92, "type" => "float", "description" => "The MOST stability exponent (\$\\gamma\$) for the Grachev universal functions (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "cloud_ice_mass_size_relation_coefficient_me" => Dict{String, Any}("value" => 3, "type" => "float", "description" => "Exponent \$m_e\$ in the mass-size relation for cloud ice in the 1-moment microphysics scheme (unitless)."), "most_stability_parameter_grachev" => Dict{String, Any}("value" => 3.6, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta_a\$) for the Grachev universal functions (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "SB2006_raindrops_size_distribution_coeff_lambda_max" => Dict{String, Any}("value" => 10000.0, "type" => "float", "description" => "Maximum value of the raindrops size distribution parameter \$\\lambda\$ (m⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "Chen2022_table_B1_a3_pow_coeff" => Dict{String, Any}("value" => -0.47335, "type" => "float", "description" => "Power coefficient for \$a_3\$ in raindrop terminal velocity parameterization (unitless). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171."), "Alpert2022_J_deposition_m_Feldspar" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Coefficient 'm' for deposition nucleation rate \$J_{het}\$ of Feldspar (unitless). Source: Alpert et al. (2022), DOI: 10.1039/D1EA00077B."), "pressure_normalmode_param_vec" => Dict{String, Any}("value" => [0.0, 0.0, 0.0, 0.0, 0.0], "type" => "float", "description" => "Data-driven perturbation pressure parameter vector (unitless)."), "rain_terminal_velocity_size_relation_coefficient_ve" => Dict{String, Any}("value" => 0.5, "type" => "float", "description" => "Exponent \$v_e\$ in the terminal velocity-size relation for rain in the 1-moment microphysics scheme (unitless)."), "most_stability_parameter_beljaars" => Dict{String, Any}("value" => 3.4, "type" => "float", "description" => "The MOST stability parameter (\$\\zeta_a\$) for the Beljaars universal functions (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "detr_massflux_vertdiv_coeff" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Coefficient for the mass flux vertical divergence term in the detrainment closure (unitless)."), "coefficient_d_m_beljaars" => Dict{String, Any}("value" => 0.35, "type" => "float", "description" => "Coefficient \$d_m\$ for the Beljaars momentum universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "coefficient_b_m_beljaars" => Dict{String, Any}("value" => 0.667, "type" => "float", "description" => "Coefficient \$b_m\$ for the Beljaars momentum universal function (unitless). Source: Beljaars et al. (1991), DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2."), "SB2006_raindrops_breakup_mean_diameter_threshold" => Dict{String, Any}("value" => 0.00035, "type" => "float", "description" => "Threshold of raindrops mean diameter for breakup (m). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "richardson_critical" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "The critical Richardson number (\$Ri_{crit}\$), a unitless parameter defining the cutoff for stable mixing. Source: Frierson et al. (2006), DOI: 10.1175/JAS3753.1."), "J_ABIFM_c_Dust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Default empirical coefficient 'c' for the water-activity-based immersion freezing rate (\$J_{het}\$) parameterization for dust (unitless)."), "mam3_nucleation_a_2_neutral" => Dict{String, Any}("value" => 1.84826, "type" => "float", "description" => "Empirical coefficient \$a_{2,n}\$ for neutral pure organic nucleation (unitless). Assumes [HOM] is in 10⁷ cm⁻³ and other concentrations have units (TODO). Source: Kirkby et al. (2016), DOI: 10.1038/nature17953."), "plant_nu" => Dict{String, Any}("tag" => "PlantHydraulicsParameters", "value" => 0.000144, "type" => "float", "description" => "Porosity (m3/m3)"), "rain_terminal_velocity_size_relation_coefficient_delv" => Dict{String, Any}("value" => 0, "type" => "float", "description" => "Coefficient \$\\delta_v\$ in the terminal velocity-size relation for rain in the 1-moment microphysics scheme (unitless)."), "soil_momentum_roughness_length" => Dict{String, Any}("value" => 0.01, "type" => "float", "description" => "Momentum roughness length for soil (m). Source: CLM5 Technical Note."), "max_area_limiter_scale" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Scaling coefficient for the maximum area limiter in detrainment (unitless)."), "EDMF_thermodynamics_covariance_model" => Dict{String, Any}("value" => "diagnostic", "type" => "string", "description" => "Covariance model for EDMF thermodynamics. Options: 'diagnostic' (default), 'prognostic'."), "mixing_length_eddy_viscosity_coefficient" => Dict{String, Any}("value" => 0.14, "type" => "float", "description" => "TKE diffusivity coefficient (\$c_m\$) for the EDMF mixing length closure (unitless). Source: Lopez-Gomez et al. (2020), Table 1."), "p_over_sulphuric_acid_solution_w_2" => Dict{String, Any}("value" => 1.4408, "type" => "float", "description" => "Coefficient for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "gas_constant_dry_air" => Dict{String, Any}("value" => 287.0, "type" => "float", "description" => "Gas constant for dry air (J kg⁻¹ K⁻¹)."), "J_ABIFM_c_ArizonaTestDust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Empirical coefficient 'c' for the immersion freezing rate (\$J_{het}\$) of Arizona Test Dust (unitless)."), "EDMF_thermodynamics_quadrature_type" => Dict{String, Any}("value" => "log-normal", "type" => "string", "description" => "Assumed PDF shape for environmental variables (\$q_{tot}, \\theta_{liq_ice}\$) with SGS quadrature. Options: 'log-normal' (default), 'gaussian'."), "coefficient_c_h_grachev" => Dict{String, Any}("value" => 3.0, "type" => "float", "description" => "Coefficient \$c_h\$ for the Grachev heat universal function (unitless). Source: Grachev et al. (2007), DOI: 10.1007/s10546-007-9177-6."), "photosystem_II_quantum_yield" => Dict{String, Any}("value" => 0.7, "type" => "float", "description" => "Quantum yield of photosystem II (unitless). Source: Bonan (2019); Bernacchi (2003)."), "sulfate_aerosol_water_soluble_mass_fraction" => Dict{String, Any}("value" => 1, "type" => "float", "description" => "Mass fraction of water-soluble material for sulfate aerosol (unitless)."), "beta_min" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 1.0, "type" => "float", "description" => "The minimum of β_scf as horizontal resolution gets coarser (unitless)"), "canopy_momentum_roughness_length" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Roughness length for momentum (m)"), "soil_scalar_roughness_length" => Dict{String, Any}("value" => 0.007, "type" => "float", "description" => "Scalar roughness length for soil (m), assuming friction velocity \$u_*\$ of 5 m s⁻¹. Source: CLM5 Technical Note."), "detr_ramp_steepness_factor" => Dict{String, Any}("value" => 10.0, "type" => "float", "description" => "Factor for calculating the steepness of the sigmoid ramp for the detrainment top limiter. Steepness = factor / (z_end - z_start)."), "michaelis_constant" => Dict{String, Any}("value" => 0.005, "type" => "float", "description" => "Michaelis constant (kg C m⁻³). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "J_ABIFM_c_SaharanDust" => Dict{String, Any}("value" => -1.35, "type" => "float", "description" => "Empirical coefficient 'c' for the immersion freezing rate (\$J_{het}\$) of Saharan Dust (unitless)."), "Mohler2006_S0_cold_DesertDust" => Dict{String, Any}("value" => 1.03, "type" => "float", "description" => "Onset saturation ratio \$S_0\$ for temperatures < \$T_{thr}\$ for Desert Dust (unitless). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "mam3_nucleation_u_t_n_neutral" => Dict{String, Any}("value" => 182.4495, "type" => "float", "description" => "Empirical coefficient \$u_{t,n}\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "SB2006_autoconversion_correcting_function_coeff_b" => Dict{String, Any}("value" => 3, "type" => "float", "description" => "Coefficient \$b\$ in the universal function correcting the autoconversion rate (unitless). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "wavelength_per_NIR_photon" => Dict{String, Any}("value" => 1.65e-6, "type" => "float", "description" => "Typical wavelength of a photon in the Near-Infrared (NIR) band (m)."), "RAI" => Dict{String, Any}("tag" => "PrescribedSiteAreaIndex", "value" => 1.0, "type" => "float", "description" => "The constant root area index (RAI; m2/m2)"), "longitude_perihelion_at_epoch" => Dict{String, Any}("value" => 4.938188299449, "type" => "float", "description" => "Longitude of perihelion at epoch (radians). Corresponds to 282.9373°."), "SB2006_raindrops_terminal_velocity_coeff_cR" => Dict{String, Any}("value" => 600, "type" => "float", "description" => "Coefficient \$c_R\$ in the raindrops terminal velocity equation (m⁻¹). Source: Seifert and Beheng (2006), DOI: 10.1007/s00703-005-0112-4."), "coefficient_a_m_businger" => Dict{String, Any}("value" => 4.7, "type" => "float", "description" => "Coefficient \$a_m\$ for the Businger momentum universal function (unitless). Source: Businger et al. (1971), DOI: 10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2."), "snow_terminal_velocity_size_relation_coefficient" => Dict{String, Any}("value" => 0.25, "type" => "float", "description" => "Exponent in the terminal velocity-size relation for snow in the 1-moment microphysics scheme (unitless)."), "optics_lookup_temperature_max" => Dict{String, Any}("value" => 355, "type" => "float", "description" => "Maximum temperature in the lookup table for optical properties in RRTMGP (K)."), "p_over_sulphuric_acid_solution_c2" => Dict{String, Any}("value" => 5.3465, "type" => "float", "description" => "Coefficient \$c_2\$ for the H₂SO₄ solution vapor pressure parameterization (unitless). Source: Luo et al. (1995), DOI: 10.1029/94GL02988."), "prandtl_number_0_holtslag" => Dict{String, Any}("value" => 1.0, "type" => "float", "description" => "The turbulent Prandtl number in neutral conditions (\$Pr_0\$) for the Holtslag universal functions (unitless). Source: Holtslag et al. (1988), DOI: 10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2."), "held_suarez_minimum_temperature" => Dict{String, Any}("value" => 200, "type" => "float", "description" => "Minimum temperature allowed in the benchmark (K). Source: Held and Suarez (1994), DOI: 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2."), "min_area_limiter_scale" => Dict{String, Any}("value" => 0.001, "type" => "float", "description" => "Scaling coefficient for the minimum area limiter in entrainment (unitless)."), "entrainment_area_limiter_scale" => Dict{String, Any}("value" => 4.0, "type" => "float", "description" => "Scaling factor (amplitude) of the exponential detrainment area limiter (unitless)."), "mam3_nucleation_p_A_n_neutral" => Dict{String, Any}("value" => 8.003471, "type" => "float", "description" => "Empirical coefficient \$p_{A,n}\$ for neutral pure ternary (H₂SO₄-NH₃-H₂O) nucleation (unitless). Assumes [H₂SO₄] and [NH₃] are in 10⁶ cm⁻³. Source: Dunne et al. (2016), DOI: 10.1126/science.aaf2649."), "seasalt_aerosol_molar_mass" => Dict{String, Any}("value" => 0.058443, "type" => "float", "description" => "Molar mass of sea salt aerosol (kg mol⁻¹)."), "Mohler2006_threshold_T" => Dict{String, Any}("value" => 220, "type" => "float", "description" => "Threshold temperature, \$T_{thr}\$, separating two deposition regimes (K). Source: Mohler et al. (2006), DOI: 10.5194/acp-6-3007-2006."), "pressure_normalmode_adv_coeff" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Pressure advection (damping) coefficient in the perturbation pressure closure (unitless). Source: He et al. (2022), Eq. 34."), "kg_C_to_mol_CO2_factor" => Dict{String, Any}("value" => 83.26, "type" => "float", "description" => "Conversion factor from kg C to mol CO₂."), "gravitational_acceleration" => Dict{String, Any}("value" => 9.81, "type" => "float", "description" => "Gravitational acceleration on the planet (m s⁻²)."), "J_ABDINM_m_SaharanDust" => Dict{String, Any}("value" => 13.2251, "type" => "float", "description" => "Empirical coefficient 'm' for the deposition nucleation rate (\$J_{het}\$) of Saharan Dust (unitless)."), "mixing_length_param_vec" => Dict{String, Any}("value" => [0.0, 0.0, 0.0, 0.0, 0.0], "type" => "float", "description" => "Data-driven mixing length parameter vector (unitless)."), "soluble_soil_carbon_fraction" => Dict{String, Any}("value" => 0.024, "type" => "float", "description" => "Fraction of soil carbon that is considered soluble (dimensionless). Source: Davidson et al. (2011), DOI: 10.1111/j.1365-2486.2011.02546.x."), "SB2006_collection_kernel_coeff_kcr" => Dict{String, Any}("value" => 5.25, "type" => "float", "description" => "Cloud-rain collection kernel constant \$k_{cr}\$ in the Seifert and Beheng (2006) scheme (\$m^3 kg⁻¹ s⁻¹\$). Source: DOI: 10.1007/s00703-005-0112-4."), "minimum_updraft_top" => Dict{String, Any}("value" => 500.0, "type" => "float", "description" => "Minimum updraft height limiter (m)."), "Chen2022_table_B1_q_coeff" => Dict{String, Any}("value" => 0.115231, "type" => "float", "description" => "Coefficient \$q\$ for raindrop terminal velocity parameterization (unitless). Source: Table B1 in Chen et al. (2022), DOI: 10.1016/j.atmosres.2022.106171.")), Dict{String, Any}("x0" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.2, "type" => "float", "description" => "Value of relative snow density ρ_snow/ρ_liq at which snow density begins to decrease albedo, ∈ [0,1]"), "psi_63" => Dict{String, Any}("tag" => "Weibull", "value" => -408.16326530612247, "type" => "float", "description" => "The absolute water potential in xylem (or xylem water potential) at which ∼63% of maximum xylem conductance is lost (Liu, 2020). Computed by -4 / 0.0098. Holtzman's original parameter value is -4 MPa"), "beta_min" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 1.0, "type" => "float", "description" => "The minimum of β_scf as horizontal resolution gets coarser (unitless)"), "bucket_z_0m" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.01, "type" => "float", "description" => "Roughness length for momentum (m)"), "a" => Dict{String, Any}("tag" => "LinearRetentionCurve", "value" => 0.00196, "type" => "float", "description" => "Units are 1/m. Bulk modulus of elasticity and slope of potential to volume curve. See also Corcuera, 2002, and Christoffersen, 2016. Computed by 0.2 * 0.0098."), "canopy_momentum_roughness_length" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Roughness length for momentum (m)"), "delta_S" => Dict{String, Any}("value" => 0.1, "type" => "float", "description" => "Parameter to prevent dividing by zero when computing snow temperature (m)"), "canopy_scalar_roughness_length" => Dict{String, Any}("value" => 0.2, "type" => "float", "description" => "Roughness length for scalars (m)"), "f_over" => Dict{String, Any}("tag" => "TOPMODELRunoff", "value" => 3.28, "type" => "float", "description" => "Units are 1/m"), "bucket_capacity_fraction" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.75, "type" => "float", "description" => "Fraction of bucket capacity at which evaporation β begins to decay to zero (unitless)"), "bucket_beta_decay_exponent" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 1.0, "type" => "float", "description" => "Exponent used in β decay (unitless)"), "beta_0" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 1.77, "type" => "float", "description" => "he value of β_scf at 1.5∘ horizontal resolution (unitless)"), "K_sat_plant" => Dict{String, Any}("tag" => "Weibull", "value" => 7.0e-8, "type" => "float", "description" => "Maximum Water conductivity in the above-ground plant compartments (m/s) at saturation. Units are m / s."), "ac_canopy" => Dict{String, Any}("tag" => "BigLeafEnergyModel", "value" => 2500.0, "type" => "float", "description" => "Specific heat per emitting area [J/m^2/K]"), "land_bucket_capacity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.2, "type" => "float", "description" => "Capacity of the land bucket (m)"), "bucket_soil_heat_capacity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 2.0e6, "type" => "float", "description" => "Volumetric heat capacity of the soil (J/m^3/K); constant"), "k" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 2.0, "type" => "float", "description" => "Rate at which albedo drops to its minimum value with zenith angle"), "delta_alpha" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.06, "type" => "float", "description" => "Free parameter controlling the snow albedo when θs = 90∘"), "z0" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 0.106, "type" => "float", "description" => "The value used to normalize snow depth when computing snow cover fraction (m)"), "critical_snow_fraction" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.0, "type" => "float", "description" => "Fraction of critical amount of snow at which sublimation β begins to decay to zero (unitless)"), "alpha_snow" => Dict{String, Any}("tag" => "PrescribedBaregroundAlbedo", "value" => 0.8, "type" => "float"), "R_sb" => Dict{String, Any}("tag" => "TOPMODELRunoff", "value" => 1.484e-7, "type" => "float", "description" => "Units are m/s"), "bucket_z_0b" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.001, "type" => "float", "description" => "Roughness length for scalars (m)"), "beta" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.4, "type" => "float", "description" => "Rate governing how snow albedo changes with snow density, a proxy for grain size and liquid water content, ∈ [0,1]"), "bucket_soil_conductivity" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 1.5, "type" => "float", "description" => "Conductivity of the soil (W/K/m); constant"), "Weibull_c" => Dict{String, Any}("tag" => "Weibull", "value" => 4, "type" => "float", "description" => "Weibull parameter c, which controls shape the shape of the conductance curve (Sperry, 2016). Unitless. Holtzman's original c param value."), "SAI" => Dict{String, Any}("tag" => "PrescribedSiteAreaIndex", "value" => 0.0, "type" => "float", "description" => "The constant stem area index (SAI; m2/m2)"), "plant_S_s" => Dict{String, Any}("tag" => "PlantHydraulicsParameters", "value" => 9.8e-5, "type" => "float", "description" => "Storativity (m3/m3). Computed by 1e-2 * 0.0098."), "gamma" => Dict{String, Any}("tag" => "WuWuSnowCoverFractionModel", "value" => 0.08, "type" => "float", "description" => "Free parameter controlling the snow cover scaling change with resolution (1/degrees)"), "plant_nu" => Dict{String, Any}("tag" => "PlantHydraulicsParameters", "value" => 0.000144, "type" => "float", "description" => "Porosity (m3/m3)"), "RAI" => Dict{String, Any}("tag" => "PrescribedSiteAreaIndex", "value" => 1.0, "type" => "float", "description" => "The constant root area index (RAI; m2/m2)"), "alpha_0" => Dict{String, Any}("tag" => "ZenithAngleAlbedoModel", "value" => 0.64, "type" => "float", "description" => "Free parameter controlling the minimum snow albedo"), "critical_snow_water_equivalent" => Dict{String, Any}("tag" => "BucketModelParameters", "value" => 0.2, "type" => "float", "description" => "Critical σSWE amount (m) where surface transitions from to snow-covered")))
Set timestep, startdate, stopdate:
Δt = 450.0
start_date = DateTime(2008)
stop_date = DateTime(2009);
Create the domain - this is intentionally low resolution, about 4.5 x 4.5 degrees horizontally, to avoid allocating a lot of memory when building the documentation. By default and for testing runs we use nelements = (101, 15)
, which is about 0.9 x 0.9 degrees horizontally with 15 layers vertically.
nelements = (20, 7)
domain = ClimaLand.Domains.global_domain(FT; context, nelements);
Low-resolution forcing data from ERA5 is used here, but high-resolution should be used for production runs.
era5_ncdata_path = ClimaLand.Artifacts.era5_land_forcing_data2008_path(;
context,
lowres = true,
)
forcing = ClimaLand.prescribed_forcing_era5(
era5_ncdata_path,
domain.space.surface,
start_date,
earth_param_set,
FT;
max_wind_speed = 25.0,
time_interpolation_method = LinearInterpolation(PeriodicCalendar()),
regridder_type = :InterpolationsRegridder,
);
MODIS LAI is prescribed for the canopy model:
LAI =
ClimaLand.prescribed_lai_modis(domain.space.surface, start_date, stop_date);
Make the model:
model = ClimaLand.LandModel{FT}(forcing, LAI, toml_dict, domain, Δt);
simulation = ClimaLand.Simulations.LandSimulation(
start_date,
stop_date,
Δt,
model;
outdir,
);
Run the simulation and make plots:
ClimaLand.Simulations.solve!(simulation)
LandSimVis.make_annual_timeseries(simulation; savedir = root_path)
LandSimVis.make_heatmaps(simulation;date = stop_date, savedir = root_path)
LandSimVis.make_leaderboard_plots(simulation, savedir = root_path)
This page was generated using Literate.jl.