Driver
Solver types and functions
ClimateMachine.HEVISplitting — TypeHEVISplittingHEVI (horizontally explicit, vertically implicit) type method, where vertical acoustic waves are treated implicitly. All other dynamics are treated explicitly.
Note: Can potentially imagine several different types of HEVI splittings (for example, include vertical momentum and/or diffusion)
ClimateMachine.MISSolverType — TypeDescription
MISSolverType(;
splitting_type = SlowFastSplitting(),
fast_model = AtmosAcousticGravityLinearModel,
mis_method = MIS2,
fast_method = LSRK54CarpenterKennedy,
nsubsteps = 50,
)This solver type constructs an ODE solver using a generalization of the split-explicit Runge-Kutta method. Known as the Multirate Infinitesimal Step (MIS) method, this solver solves ODEs with the partitioned form:
\[ \dot{Q} = f_{fast}(Q, t) + f_{slow}(Q, t)\]
where the right-hand-side functions f_fast and f_slow denote fast and slow dynamics respectively, depending on the state Q.
Arguments
splitting_type(DiscreteSplittingType): The type of discrete splitting to apply to the right-hand side. Default:SlowFastSplitting()fast_model(Type): The model describing fast dynamics. Default:AtmosAcousticGravityLinearModelmis_method(Function): Function defining the particular MIS method to be used. Default:MIS2fast_method(Function): Function defining the fast solver. Default:LSRK54CarpenterKennedynsubsteps(Tuple): Tuple denoting the total number of times to substep the fast process. Default:(50,)discrete_splitting(Boolean): Boolean denoting whether a PDE level or discretized level splitting should be used. Iftruethen the PDE is discretized in such a way thatf_fast + f_slowis equivalent to discretizing the original PDE directly. Default:false
References
ClimateMachine.MultirateSolverType — TypeDescription
MultirateSolverType(;
splitting_type = SlowFastSplitting(),
fast_model = AtmosAcousticGravityLinearModel,
implicit_solver = ManyColumnLU,
implicit_solver_adjustable = false,
slow_method = LSRK54CarpenterKennedy,
fast_method = LSRK54CarpenterKennedy,
timestep_ratio = 100,
)This solver type constructs an ODE solver using a standard multirate Runge-Kutta implementation. This solver computes solutions to ODEs with the partitioned form:
\[ \dot{Q} = f_{fast}(Q, t) + f_{slow}(Q, t)\]
where the right-hand-side functions f_fast and f_slow denote fast and slow dynamics respectively, depending on the state Q.
Arguments
splitting_type(DiscreteSplittingType): The type of discrete splitting to apply to the right-hand side. Default:SlowFastSplitting()fast_model(Type): The model describing fast dynamics. Default:AtmosAcousticGravityLinearModelimplicit_solver(Type): An implicit solver for inverting the implicit system of equations (if usingHEVISplitting()). Default:ManyColumnLUimplicit_solver_adjustable(Bool): A flag identifying whether or not theimplicit_solvercan be updated as the time-step size changes. This is particularly important when using an implicit solver within a multirate scheme. Default:falseslow_method(Function): Function defining the particular explicit Runge-Kutta method to be used for the slow processes. Default:LSRK54CarpenterKennedyfast_method(Function): Function defining the fast solver. Depending on the choice ofsplitting_type, this can be an explicit Runge Kutta method or a 1-D IMEX (additive Runge-Kutta) method. Default:LSRK54CarpenterKennedytimestep_ratio(Int): Integer denoting the ratio between the slow and fast time-step sizes. Default:100discrete_splitting(Boolean): Boolean denoting whether a PDE level or discretized level splitting should be used. Iftruethen the PDE is discretized in such a way thatf_fast + f_slowis equivalent to discretizing the original PDE directly.
References
ClimateMachine.AbstractSolverType — TypeAbstractSolverTypeThis is an abstract type representing a generic solver. By a "solver," we mean an ODE solver together with any potential implicit solver (linear solvers).
ClimateMachine.DiscreteSplittingType — TypeDiscreteSplittingTypeThis is an abstract type representing a temporal splitting in the discrete equations. For example, HEVI (horizontally explicit, vertically implicit) type methods.
ClimateMachine.ExplicitSolverType — TypeDescription
ExplicitSolverType(;
solver_method = LSRK54CarpenterKennedy,
)This solver type constructs an ODE solver using an explicit Runge-Kutta method.
Arguments
solver_method(Function): Function defining the explicit Runge-Kutta solver. Default:LSRK54CarpenterKennedy
ClimateMachine.ImplicitSolverType — TypeDescription
ImplicitSolverType(;
solver_method = KenCarp4,
)This solver type constructs an ODE solver using a fully implicit method.
Arguments
solver_method(Function): Function defining the implicit solver. Default:KenCarp4
ClimateMachine.SplitExplicitSolverType — TypeDescription
SplitExplicitSolverTypeThis solver type constructs an ODE solver using the SplitExplicitLSRK2nSolver.
Arguments
dt_slow(AbstractFloat): Time step for the slow solverdt_fast(AbstractFloat): Time step for the fast solverslow_method(Function): Function defining the explicit Runge-Kutta solver for the slow model. Default:LSRK54CarpenterKennedyfast_method(Function): Function defining the explicit Runge-Kutta solver for the fast model. Default:LSRK54CarpenterKennedy
ClimateMachine.ConfigTypes — ModuleConfigTypesModule containing ClimateMachine configuration types.
ClimateMachine.IMEXSolverType — TypeDescription
IMEXSolverType(;
splitting_type = HEVISplitting(),
implicit_model = AtmosAcousticGravityLinearModel,
implicit_solver = ManyColumnLU,
implicit_solver_adjustable = false,
solver_method = ARK2GiraldoKellyConstantinescu,
solver_storage_variant = LowStorageVariant(),
split_explicit_implicit = false,
discrete_splitting = true,
)This solver type constructs a solver for ODEs with the additively-partitioned form. When split_explicit_implicit == false the equation is assumed to be decomposed as
\[ \dot{Q} = [l(Q, t)] + [f(Q, t) - l(Q, t)]\]
where Q is the state, f is the full tendency and l is the chosen implicit operator.
When split_explicit_implicit == true the assumed decomposition is
\[ \dot{Q} = [l(Q, t)] + [n(Q, t)]\]
where n is now only the nonlinear tendency.
Arguments
splitting_type(DiscreteSplittingType): The type of discrete splitting to apply to the right-hand side. Default:HEVISplitting()implicit_model(Type): The model describing dynamics to be treated implicitly. Default:AtmosAcousticGravityLinearModelimplicit_solver(Type): A solver for inverting the implicit system of equations. Default:ManyColumnLUimplicit_solver_adjustable(Bool): A flag identifying whether or not theimplicit_solvercan be updated as the time-step size changes. Default:falsesolver_method(Function): Function defining the particular additive Runge-Kutta method to be used for the IMEX method. Default:ARK2GiraldoKellyConstantinescusolver_storage_variant(Type): Storage type for the additive Runge-Kutta method. Default:LowStorageVariant()split_explicit_implicit(Boolean): Whether the tendency is split in explicit and implicit parts or not.discrete_splitting(Boolean): Boolean denoting whether a PDE level or discretized level splitting should be used. Iftruethen the PDE is discretized in such a way thatf_fast + f_slowis equivalent to discretizing the original PDE directly.
References
ClimateMachine.HEVISolverType — TypeDescription
HEVISolverType(FT;
solver_method = ARK2ImplicitExplicitMidpoint,
linear_max_subspace_size = Int(30)
linear_atol = FT(-1.0)
linear_rtol = FT(5e-5)
nonlinear_max_iterations = Int(10)
nonlinear_rtol = FT(1e-4)
nonlinear_ϵ = FT(1.e-10)
preconditioner_update_freq = Int(50)
)This solver type constructs a solver for ODEs with the additively horizontal explicit vertical explicit~(HEVI) partitioned form. the equation is assumed to be decomposed as
\[ \dot{Q} = [l(Q, t)] + [f(Q, t) - l(Q, t)]\]
where Q is the state, f is the full tendency and l is the vertical implicit operator. The splitting is done automatically.
Arguments
solver_method(Function): Function defining the particular additive Runge-Kutta method to be used for the HEVI method. Default:ARK2ImplicitExplicitMidpointlinear_max_subspace_size(Int): maximal dimension of each (batched) Krylov subspace. GEMRES, a iterative linear solver is applied Default:30linear_atol(FT): absolute tolerance for linear solver convergence. Default:-1.0linear_rtol(FT): relative tolerance for linear solver convergence. Default:5.0e-5nonlinear_max_iterations(Int): max number of Newton iterations Default:10nonlinear_rtol(FT): relative tolerance for nonlinear solver convergence. Default:1e-4nonlinear_ϵ(FT): parameter denoting finite different step size for the Jacobian approximation. Default:1e-10preconditioner_update_freq(Int): Int denoting how frequent you need to update the preconditioner -1: no preconditioner; positive number, update every freq times. Default:50
ClimateMachine.getdtmodel — Functiongetdtmodel(ode_solver::AbstractSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::AbstractSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::AbstractSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::IMEXSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::HEVISolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::MultirateSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::MISSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
getdtmodel(ode_solver::AbstractSolverType, bl)A function which returns a model representing the dynamics with the most restrictive time-stepping requirements.
Configurations
ClimateMachine.DriverConfiguration — TypeClimateMachine.DriverConfigurationCollects all parameters necessary to set up a ClimateMachine simulation.
ClimateMachine.SolverConfiguration — TypeClimateMachine.SolverConfigurationParameters needed by ClimateMachine.solve!() to run a simulation.
ClimateMachine.InterpolationConfiguration — FunctionInterpolationConfiguration(
driver_config::DriverConfiguration,
boundaries::Array,
resolution = nothing;
axes = nothing;
)Creates an InterpolationTopology (either an InterpolationBrick or an InterpolationCubedSphere) to be used with a DiagnosticsGroup. Either resolution is specified, in which case the axes are set up with equi-distant points, or the axes may be specified directly (in lat/lon/lvl or x/y/z order).
ClimateMachine.DiagnosticsConfiguration — TypeDiagnosticsConfigurationContainer for all the DiagnosticsGroups to be used for a simulation.
ClimateMachine.ConservationCheck — TypeClimateMachine.ConservationCheckPass a tuple of these to ClimateMachine.invoke! to perform a conservation check of each varname at the specified interval. This computes Σv = weightedsum(Q.varname) and δv = (Σv - Σv₀) / Σv. invoke! throws an error if abs(δv) exceeds error_threshold. Ifshow,δv` is displayed.
Initialize / solve
ClimateMachine.array_type — FunctionClimateMachine.array_type()Return the array type used by ClimateMachine. This defaults to (CPU-based) Array and is only correctly set (based on choice from the command line, from an environment variable, or from experiment code) after ClimateMachine.init() is called.
ClimateMachine.datetime — FunctionClimateMachine.datetime(solver::AbstractODESolver)Return the current simulation date and time.
ClimateMachine.init — FunctionClimateMachine.init(;
parse_clargs::Bool = false,
custom_clargs::Union{Nothing, ArgParseSettings} = nothing,
init_driver::Bool = true,
keyword_args...,
)Initialize the ClimateMachine. If parse_clargs is set, parse command line arguments (additional driver-specific arguments can be added by specifying custom_clargs).
Setting init_driver = false will set up the ClimateMachine.Settings singleton values without initializing the ClimateMachine runtime. Otherwise, the runtime will be initialized (see init_runtime()).
Finally, key-value pairs can be supplied to ClimateMachine.init() to set system default settings – the final settings are decided as follows (in order of precedence):
- Command line arguments (if
parse_clargs = true). - Environment variables.
- Keyword arguments to
init(). - Defaults (in
ClimateMachine_Settings).
Recognized keyword arguments are:
disable_gpu::Bool = false: do not use the GPUshow_updates::String = "60secs": interval at which to show simulation updatesstart_datetime::DateTime = DateTime(2000, 1, 1, 12): date/time at which the simulation startsdiagnostics::String = "never": interval at which to collect diagnostics"no_overwrite::Bool = false: throw an error if an output file would be overwrittenvtk::String = "never": interval at which to write simulation vtk outputvtk-number-sample-points::Int= 0: the number of sampling points in each element for VTK outputmonitor_timestep_duration::String = "never": interval in time-steps at which to output wall-clock time per time-stepmonitor_courant_numbers::String = "never": interval at which to output acoustic, advective, and diffusive Courant numbersadapt-timestep::String = "never": interval at which to update the timestepcheckpoint::String = "never": interval at which to write a checkpointcheckpoint_keep_one::Bool = true: (interval) keep all checkpoints (instead of just the most recent)checkpoint_at_end::Bool = false: create a checkpoint at the end of the simulationcheckpoint_on_crash::Bool = false: create a checkpoint on a kernel crash (hurts performance!)checkpoint_dir::String = "checkpoint": absolute or relative path to checkpoint directoryrestart_from_num::Int = -1: checkpoint number from which to restart (incheckpoint_dir)fix_rng_seed::Bool = false: set RNG seed to a fixed value for reproducibilitylog_level::String = "INFO": log level for ClimateMachine global default runtime loggerdisable_custom_logger::String = false: disable using a global custom logger for ClimateMachineoutput_dir::String = "output": (path) absolute or relative path to output data directorydebug_init::Bool = false: fill state arrays with NaNs and dump them post-initializationintegration_testing::Bool = false: enable integration_testingsim_time::Float64 = NaN: run for the specified time (in simulation seconds)fixed_number_of_steps::Int = -1: if≥0perform specified number of stepsdegree::NTuple{2, Int} = (-1, -1): tuple of horizontal and vertical polynomial degrees for spatial discretization ordercutoff_degree::NTuple{2, Int} = (-1, -1): tuple of horizontal and vertical polynomial degrees for cutoff filternelems::NTuple{3, Int} = (-1, -1, -1): tuple of number of elements in each direction: 3 for Ocean, 2 for GCM or 1 for single-stackdomain_height::Float64 = -1: domain height (in meters) for GCM or single-stack configurationsresolution::NTuple{3, Float64} = (-1, -1, -1): tuple of three element resolutions (in meters) for LES and MultiColumnLandModel configurationsdomain_min::NTuple{3, Float64} = (-1, -1, -1): tuple of three minima for the domain size (in meters) for LES and MultiColumnLandModel configurationsdomain_max::NTuple{3, Float64} = (-1, -1, -1): tuple of three maxima for the domain size (in meters) for LES and MultiColumnLandModel configurations
Returns nothing, or if parse_clargs = true, returns parsed command line arguments.
ClimateMachine.invoke! — FunctionClimateMachine.invoke!(
solver_config::SolverConfiguration;
adjustfinalstep = false,
diagnostics_config = nothing,
user_callbacks = (),
user_info_callback = () -> nothing,
check_cons = (),
check_euclidean_distance = false,
)Run the simulation defined by solver_config.
Keyword Arguments:
The value of 'adjustfinalstepis passed to the ODE solver; see [solve!`](@ref ODESolvers.solve!).
The user_callbacks are passed to the ODE solver as callback functions; see solve!.
The function user_info_callback is called after the default info callback (which is called every Settings.show_updates interval). The single input argument init is true when the callback is called for initialization (before time stepping begins) and false when called during the actual ODE solve; see GenericCallbacks and solve!.
If conservation checks are to be performed, check_cons must be a tuple of ConservationCheck.
If check_euclidean_distance is true, then the Euclidean distance between the final solution and initial condition function evaluated withsolver_config.timeend` is reported.