References

[1]
E. Kessler. On the continuity and distribution of water substance in atmospheric circulations. Atmospheric research 38, 109–145 (1995).
[2]
W. W. Grabowski. Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. Journal of the Atmospheric Sciences 55, 3283–3298 (1998).
[3]
C. M. Kaul, J. Teixeira and K. Suzuki. Sensitivities in large-eddy simulations of mixed-phase Arctic stratocumulus clouds using a simple microphysics approach. Monthly Weather Review 143, 4393–4421 (2015).
[4]
J. S. Marshall and W. Palmer. The distribution of raindrops with size. Journal of meteorology 5, 165–166 (1948).
[5]
W. W. Grabowski and P. K. Smolarkiewicz. Two-time-level semi-Lagrangian modeling of precipitating clouds. Monthly weather review 124, 487–497 (1996).
[6]
J. Y. Harrington, M. P. Meyers, R. L. Walko and W. R. Cotton. Parameterization of ice crystal conversion processes due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. Journal of the atmospheric sciences 52, 4344–4366 (1995).
[7]
S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. Journal of the Atmospheric Sciences 40, 1185–1206 (1983).
[8]
S. A. Rutledge and P. V. Hobbs. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. Journal of the Atmospheric Sciences 41, 2949–2972 (1984).
[9]
H. Morrison and A. Gettelman. A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. Journal of Climate 21, 3642–3659 (2008).
[10]
A. Seifert and K. D. Beheng. A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description. Meteorology and atmospheric physics 92, 45–66 (2006).
[11]
Y. Ogura and T. Takahashi. Numerical simulation of the life cycle of a thunderstorm cell. Mon. Wea. Rev 99, 895–911 (1971).
[12]
J.-P. Chen, T.-W. Hsieh, C.-Y. Lin and C.-K. Yu. Accurate parameterization of precipitation particles' fall speeds for bulk cloud microphysics schemes. Atmospheric Research 293 (2022).
[13]
R. Wood. Drizzle in stratiform boundary layer clouds. Part II: Microphysical aspects. Journal of the atmospheric sciences 62, 3034–3050 (2005).
[14]
B. J. Mason. Physics of clouds (Clarendon Press, 2010).
[15]
L.-P. Wang, C. N. Franklin, O. Ayala and W. W. Grabowski. Probability distributions of angle of approach and relative velocity for colliding droplets in a turbulent flow. Journal of the atmospheric sciences 63, 881–900 (2006).
[16]
M. Khairoutdinov and Y. Kogan. A New Cloud Physics Parameterization in a Large-Eddy Simulation Model of Marine Stratocumulus. Monthly Weather Review 128, 229–243 (2000).
[17]
K. Beheng. A parameterization of warm cloud microphysical conversion processes. Atmospheric Research 33, 193–206 (1994).
[18]
G. Tripoli and W. Cotton. A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida. Journal of Applied Meteorology and Climatology 19, 1037–1063 (1980).
[19]
Y. Liu and P. Daum. Parameterization of the Autoconversion Process.Part I: Analytical Formulation of the Kessler-Type Parameterizations. Journal of the Atmospheric Sciences 61, 1539–1548 (2004).
[20]
Y. Liu and J. Hallett. The ‘1/3’ power law between effective radius and liquid-water content. Quarterly Journal of the Royal Meteorological Society 123, 1789–1795 (1997).
[21]
H. Morrison and J. A. Milbrandt. Parameterization of Cloud Microphysics Based on the Prediction of Bulk Ice Particle Properties. Part I: Scheme Description and Idealized Tests. Journal of the Atmospheric Sciences 72, 287–311 (2015).
[22]
P. R. Brown and P. N. Francis. Improved Measurements of the Ice Water Content in Cirrus Using a Total-Water Probe. Journal of Atmospheric and Oceanic Technology 12, 410–414 (1995).
[23]
D. L. Mitchell. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. Journal of the Atmospheric Sciences 53, 1710–1723 (1996).
[24]
A. J. Heymsfield. Properties of Tropical and Midlatitude Ice Cloud Particle Ensembles. Part II: Applications for Mesoscale and Climate Models. Journal of the Atmospheric Sciences 60, 2592–2611 (2003).
[25]
H. Morrison and W. W. Grabowski. A Novel Approach for Representing Ice Microphysics in Models: Description and Tests Using a Kinematic Framework. Journal of the Atmospheric Sciences 65, 1528–1548 (2008).
[26]
U. Blahak. Efficient approximation of the incomplete gamma function for use in cloud model applications. Geoscientific Model Development 3, 329–336 (2010).
[27]
M. Cholette, H. Morrison, J. A. Milbrandt and J. M. Thériault. Parameterization of the Bulk Liquid Fraction on Mixed-Phase Particles in the Predicted Particle Properties (P3) Scheme: Description and Idealized Simulations. Journal of the Atmospheric Sciences 76, 561–582 (2019).
[28]
D. L. Mitchell and A. J. Heymsfield. Refinements in the Treatment of Ice Particle Terminal Velocities, Highlighting Aggregates. Journal of the Atmospheric Sciences 62, 1637–1644 (2005).
[29]
M. Simmel, T. Trautmann and G. Tetzlaff. Numerical solution of the stochastic collection equation—comparison of the Linear Discrete Method with other methods. Atmoshperic Research 61 (2002).
[30]
[31]
N. Desai, K. Chandrakar, G. Kinney, W. Cantrell and R. Shaw. Aerosol-Mediated Glaciation of Mixed-Phase Clouds: Steady-State Laboratory Measurements. Geophysical Research Letters 46, 9154–9162 (2019).
[32]
H. Morrison and W. W. Grabowski. Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics. Journal of the Atmospheric Sciences 65, 792–812 (2008).
[33]
H. Abdul-Razzak, S. J. Ghan and C. Rivera-Carpio. A parameterization of aerosol activation: 1. Single aerosol type. Journal of Geophysical Research: Atmospheres 103, 6123–6131 (1998).
[34]
H. Abdul-Razzak and S. J. Ghan. A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research: Atmospheres 105, 6837–6844 (2000).
[35]
M. D. Petters and S. M. Kreidenweis. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics 7, 1961–1971 (2007).
[36]
R. Rogers. An elementary parcel model with explicit condensation and supersaturation. Atmosphere 13, 192–204 (1975).
[37]
M. Baumgartner, C. Rolf, J.-U. Grooß, J. Schneider, T. Schorr, O. Möhler, P. Spichtinger and M. Krämer. New investigations on homogeneous ice nucleation: the effects of water activity and water saturation formulations. Atmospheric Chemistry and Physics 22, 65–91 (2022).
[38]
[39]
B. Luo, K. S. Carslaw, T. Peter and S. L. Clegg, vapour pressures of H2SO4/HNO3/HCl/HBr/H2O solutions to low stratospheric temperatures. Geophysical Research Letters 22, 247–250 (1995).
[40]
[41]
O. Möhler, P. R. Field, P. Connolly, S. Benz, H. Saathoff, M. Schnaiter, R. Wagner, R. Cotton, M. Krämer, A. Mangold and A. J. Heymsfield. Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmospheric Chemistry and Physics 6, 3007–3021 (2006).
[42]
[43]
S. China, P. A. Alpert, B. Zhang, S. Schum, K. Dzepina, K. Wright, R. C. Owen, P. Fialho, L. R. Mazzoleni, C. Mazzoleni and D. A. Knopf. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean. Journal of Geophysical Research: Atmospheres 122, 3065–3079 (2017).
[44]
P. A. Alpert, A. Boucly, S. Yang, H. Yang, K. Kilchhofer, Z. Luo, C. Padeste, S. Finizio, M. Ammann and B. Watts. Ice nucleation imaged with X-ray spectro-microscopy.  Environ. Sci.: Atmos. 2, 335–351 (2022).
[45]
G. Thompson, R. M. Rasmussen and K. Manning. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review 132, 519–542 (2004).
[46]
S. Karthika, T. K. Radhakrishnan and P. Kalaichelvi. A Review of Classical and Nonclassical Nucleation Theories. Crystal Growth & Design 16, 6663–6681 (2016).
[47]
E. Bigg. The supercooling of water. Proc. Phys. Soc. 66B, 688–694 (1953).
[48]
R. H. Barklie and N. R. Gokhale. The freezing of supercooled wter drops. Alberta hal, 1958, and related studies. McGill University Stormy Weather Group Sci. Rep. MW-30, 43–64 (1959).
[49]
[50]
E. M. Dunne, H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson, I. K. Ortega, K. J. Pringle, A. Adamov, U. Baltensperger, P. Barmet, F. Benduhn, F. Bianchi, M. Breitenlechner, A. Clarke, J. Curtius, J. Dommen, N. M. Donahue, S. Ehrhart, R. C. Flagan, A. Franchin, R. Guida, J. Hakala, A. Hansel, M. Heinritzi, T. Jokinen, J. Kangasluoma, J. Kirkby, M. Kulmala, A. Kupc, M. J. Lawler, K. Lehtipalo, V. Makhmutov, G. Mann, S. Mathot, J. Merikanto, P. Miettinen, A. Nenes, A. Onnela, A. Rap, C. L. Reddington, F. Riccobono, N. A. Richards, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, K. Sengupta, M. Simon, M. Sipilä, J. N. Smith, Y. Stozkhov, A. Tomé, J. Tröstl, P. E. Wagner, D. Wimmer, P. M. Winkler, D. R. Worsnop and K. S. Carslaw. Global atmospheric particle formation from CERN CLOUD measurements. Science 354, 1119–1124 (2016).
[51]
J. Kirkby, J. Duplissy, K. Sengupta, C. Frege, H. Gordon, C. Williamson, M. Heinritzi, M. Simon, C. Yan, J. Almeida, J. Tröstl, T. Nieminen, I. K. Ortega, R. Wagner, A. Adamov, A. Amorim, A.-K. Bernhammer, F. Bianchi, M. Breitenlechner, S. Brilke, X. Chen, J. Craven, A. Dias, S. Ehrhart, R. C. Flagan, A. Franchin, C. Fuchs, R. Guida, J. Hakala, C. R. Hoyle, T. Jokinen, H. Junninen, J. Kangasluoma, J. Kim, M. Krapf, A. Kürten, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, U. Molteni, A. Onnela, O. Peräkylä, F. Piel, T. Petäjä, A. P. Praplan, K. Pringle, A. Rap, N. A. Richards, I. Riipinen, M. P. Rissanen, L. Rondo, N. Sarnela, S. Schobesberger, C. E. Scott, J. H. Seinfeld, M. Sipilä, G. Steiner, Y. Stozhkov, F. Stratmann, A. Tomé, A. Virtanen, A. L. Vogel, A. C. Wagner, P. E. Wagner, E. Weingartner, D. Wimmer, P. M. Winkler, P. Ye, X. Zhang, A. Hansel, J. Dommen, N. M. Donahue, D. R. Worsnop, U. Baltensperger, M. Kulmala, K. S. Carslaw and J. Curtius. Ion-induced nucleation of pure biogenic particles. Nature 533, 521–526 (2016).
[52]
F. Riccobono, S. Schobesberger, C. E. Scott, J. Dommen, I. K. Ortega, L. Rondo, J. Almeida, A. Amorim, F. Bianchi, M. Breitenlechner, A. David, A. Downard, E. M. Dunne, J. Duplissy, S. Ehrhart, R. C. Flagan, A. Franchin, A. Hansel, H. Junninen, M. Kajos, H. Keskinen, A. Kups, A. Kürten, A. N. Kvashin, A. Laaksonen, K. Lehtipalo, V. Makhmutov, S. Mathot, T. Nieminen, A. Onnela, T. Petäjä, A. P. Praplan, F. D. Santos, S. Schallhart, J. H. Seinfeld, M. Sipilä, D. V. Spracklen, Y. Stozhkov, F. Stratmann, A. Tomé, G. Tsagkogeorgas, P. Vaattovaara, Y. Viisanen, A. Vrtala, P. E. Wagner, E. Weingartner, H. Wex, D. Wimmer, K. S. Carslaw, J. Curtius, N. M. Donahue, J. Kirkby, M. Kulmala, D. R. Worsnop and U. Baltensperger. Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles. Science 344, 717–721 (2014).
[53]
H. Vehkamäki, M. Kulmala, I. Napari, K. E. Lehtinen, C. Timmreck, M. Noppel and A. Laaksonen. An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions. Journal of Geophysical Research: Atmospheres 107 (2002).
[54]
K. E. Lehtinen, M. Dal Maso, M. Kulmala and V.-M. Kerminen. Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. Journal of Aerosol Science 38, 988–994 (2007).
[55]
F. Glassmeier and U. Lohmann. Constraining Precipitation Susceptibility of Warm-, Ice-, and Mixed-Phase Clouds with Microphysical Equations. Journal of the Atmospheric Sciences 73, 5003–5023 (2016).
[56]
A. V. Korolev and I. P. Mazin. Supersaturation of Water Vapor in Clouds. Journal of the Atmospheric Sciences 60, 2957–2974 (2003).
[57]
B. Kärcher, J. Hendricks and U. Lohmann. Physically based parameterization of cirrus cloud formation for use in global atmospheric models. Journal of Geophysical Research: Atmospheres 111 (2006).
[58]
C. Tully, D. Neubauer and U. Lohmann. Assessing predicted cirrus ice properties between two deterministic ice formation parameterizations. Geoscientific Model Development 16, 2957–2973 (2023).
[59]
E. J. Jensen, G. S. Diskin, J. DiGangi, S. Woods, R. P. Lawson and T. V. Bui. Homogeneous Freezing Events Sampled in the Tropical Tropopause Layer. Journal of Geophysical Research: Atmospheres 127, e2022JD036535 (2022), e2022JD036535 2022JD036535.
[60]
P. A. Alpert and D. A. Knopf. Analysis of isothermal and cooling-rate-dependent immersion freezing by a unifying stochastic ice nucleation model. Atmos. Chem. Phys. 16, 2083–2107 (2016).