Observations

Observation

EnsembleKalmanProcesses.ObservationType
Observation

Structure that contains a (possibly stacked) observation. Defined by sample(s), noise covariance(s), and name(s)

Typical Constructors:

Observation(
    Dict(
        "samples" => [1,2,3],
        "covariances" => I(3),
        "names" => "one_two_three",
    ),
)

or

Observation([1,2,3], I(3), "one_two_three")

One can stack up multiple observations with combine_observations, or by providing vectors of samples, covariances and names to the dictionary.

Fields

  • samples::AbstractVector

    A (vector of) observation vectors

  • covs::AbstractVector

    A (vector of) observation covariance matrices

  • inv_covs::AbstractVector

    A (vector of) inverses of observation covariance matrices

  • names::AbstractVector

    A (vector of) name strings

  • indices::AbstractVector

    A (vector of) indices of the contained observation blocks

source
EnsembleKalmanProcesses.combine_observationsFunction
combine_observations(obs_vec::AbstractVector) -> Observation{AV1, AV2, AV3, AV4, AV5} where {AV1<:(Vector), AV2<:(Vector), AV3<:(Vector), AV4<:(Vector), AV5<:(Vector)}

combines a vector of Observation objects into a single Observation

source
EnsembleKalmanProcesses.get_obsMethod
get_obs(o::Observation) -> Any

if build=true, returns the stacked vector of observed samples samples(default), otherwise it calls get_samples

source

Minibatcher

EnsembleKalmanProcesses.FixedMinibatcherType
FixedMinibatcher <: Minibatcher

A Minibatcher that takes in a given epoch of batches. It creates a new epoch by either copying-in-order, or by shuffling, the provided batches.

Fields

  • minibatches::AbstractVector

    explicit indices of the minibatched epoch

  • method::AbstractString

    method of selecting minibatches from the list for each epoch ("order" select in order, "random" generate a random selector)

  • rng::Random.AbstractRNG

    rng for sampling, if "random" method is selected

source
EnsembleKalmanProcesses.no_minibatcherFunction
no_minibatcher() -> FixedMinibatcher{Vector{_A}, String, Random.TaskLocalRNG} where _A<:(AbstractVector)
no_minibatcher(epoch_size::Int64) -> FixedMinibatcher{Vector{_A}, String, Random.TaskLocalRNG} where _A<:(AbstractVector)

constructs a FixedMinibatcher of given epoch_size, that generates an epoch of 1:epoch_size and one minibatch that constitutes the whole epoch

source
EnsembleKalmanProcesses.RandomFixedSizeMinibatcherType
RandomFixedSizeMinibatcher <: Minibatcher

A Minibatcher that takes in a given epoch of batches. It creates a new epoch by either copying-in-order, or by shuffling, the provided batches.

Fields

  • minibatch_size::Int64

    fixed size of minibatches

  • method::AbstractString

    how to deal with remainder if minibatch-size doesn't divide the epoch size ("trim" - ignore trailing samples, "extend" - have a larger final minibatch)

  • rng::Random.AbstractRNG

    rng for sampling

  • minibatches::AbstractVector

    explicit indices of the minibatched epoch

source

ObservationSeries

EnsembleKalmanProcesses.ObservationSeriesType
ObservationSeries

Structure that contains multiple Observations along with an optional Minibatcher. Stores all observations in EnsembleKalmanProcess, as well as defining the behavior of the get_obs, get_obs_noise_cov, and get_obs_noise_cov_inv methods

Typical Constructor

ObservationSeries(
    Dict(
        "observations" => vec_of_observations,
        "names" => names_of_observations,
        "minibatcher" => minibatcher
    ),
)

Fields

  • observations::AbstractVector

    A vector of Observations to be used in the experiment

  • minibatcher::Minibatcher

    A Minibatcher object used to define the minibatching

  • names::AbstractVector

    A vector of string identifiers for the observations

  • current_minibatch_index::Dict

    The current index (epoch #, minibatch #) of the current minibatch, stored as a Dict

  • minibatches::AbstractVector

    The batch history (grouped by minibatch and epoch)

source
EnsembleKalmanProcesses.update_minibatch!Method

Within an epoch: iterates the current minibatch index by one. At the end of an epoch: obtains a new epoch of minibatches from the Minibatcher updates the epoch index by one, and minibatch index to one.

source