API
Collector
Gridded datasets
GriddingMachine.Collector.GriddedCollection
— Typestruct GriddedCollection
Structure for general gridded dataset collection (this is meant for documentation purpose).
Fields
LABEL::String
: Artifact label nameSUPPORTED_COMBOS::Vector{String}
: Supported combinationsDEFAULT_COMBO::String
: Default combination
Examples
vcmax_collection = GriddedCollection("VCMAX", ["2X_1Y_V1", "2X_1Y_V2"], "2X_1Y_V2");
GriddingMachine.Collector.biomass_collection
— Functionbiomass_collection()
Method to create a general dataset collection for biomass. Supported datasets are (click to view bibtex items)ROOT_120X_1Y_V1
(Huang et al., 2021)SHOOT_120X_1Y_V2
(Santoro et al., 2021)
ROOT_120X_1Y_V1
(Huang et al., 2021)SHOOT_120X_1Y_V2
(Santoro et al., 2021)@article{huang2021global,
author = {Huang, Y. and Ciais, P. and Santoro, M. and Makowski, D. and Chave, J. and Schepaschenko, D. and Abramoff, R. Z. and Goll, D. S. and Yang, H. and Chen, Y. and Wei, W. and Piao, S.},
year = {2021},
title = {A global map of root biomass across the world's forests},
journal = {Earth System Science Data},
volume = {13},
number = {9},
pages = {4263–4274}
}
@article{santoro2021global,
author = {Santoro, M. and Cartus, O. and Carvalhais, N. and Rozendaal, D. M. A. and Avitabile, V. and Araza, A. and de Bruin, S. and Herold, M. and Quegan, S. and Rodr{\'\i}guez-Veiga, P. and
Balzter, H. and Carreiras, J. and Schepaschenko, D. and Korets, M. and Shimada, M. and Itoh, T. and {Moreno Mart{\'\i}nez}, {\'A}. and Cavlovic, J. and {Cazzolla Gatti}, R. and
da Concei{\c c}\~ao Bispo, P. and Dewnath, N. and Labri{\`e}re, N. and Liang, J. and Lindsell, J. and Mitchard, E. T. A. and Morel, A. and {Pacheco Pascagaza}, A. M. and
Ryan, C. M. and Slik, F. and {Vaglio Laurin}, G. and Verbeeck, H. and Wijaya, A. and Willcock, S.},
year = {2021},
title = {The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations},
journal = {Earth System Science Data},
volume = {13},
number = {8},
pages = {3927--3950}
}
GriddingMachine.Collector.canopy_height_collection
— Functioncanopy_height_collection()
Method to create a general dataset collection for canopy height. Supported datasets are (click to view bibtex items)20X_1Y_V1
(Simard et al., 2011)2X_1Y_V2
(Boonman et al., 2020)
20X_1Y_V1
(Simard et al., 2011)2X_1Y_V2
(Boonman et al., 2020)@article{simard2011mapping,
author = {Simard, Marc and Pinto, Naiara and Fisher, Joshua B and Baccini, Alessandro},
year = {2011},
title = {Mapping forest canopy height globally with spaceborne lidar},
journal = {Journal of Geophysical Research: Biogeosciences},
volume = {116},
number = {G4021}
}
@article{boonman2020assessing,
author = {Boonman, Coline CF and Ben{\'i}tez-L{\'o}pez, Ana and Schipper, Aafke M and Thuiller, Wilfried and Anand, Madhur and Cerabolini, Bruno EL and Cornelissen, Johannes HC and
Gonzalez-Melo, Andres and Hattingh, Wesley N and Higuchi, Pedro and others},
year = {2020},
title = {Assessing the reliability of predicted plant trait distributions at the global scale},
journal = {Global Ecology and Biogeography},
volume = {29},
number = {6},
pages = {1034--1051}
}
GriddingMachine.Collector.clumping_index_collection
— Functionclumping_index_collection()
Method to create a general dataset collection for clumping index. Supported datasets are (click to view bibtex items)240X_1Y_V1
(He et al., 2012)2X_1Y_V1
(regridded; He et al., 2012)2X_1Y_V2
(Braghiere et al., 2019)20X_1M_V3
(Wei et al., 2019)2X_1M_V3
(regridded; Wei et al., 2019)
V2 dataset are classified for different plant functional types. The indices are Broadleaf, Needleleaf, C3 grasses, C4 grasses, and shrubland.
240X_1Y_V1
(He et al., 2012)2X_1Y_V1
(regridded; He et al., 2012)2X_1Y_V2
(Braghiere et al., 2019)20X_1M_V3
(Wei et al., 2019)2X_1M_V3
(regridded; Wei et al., 2019)@article{he2012global,
author={He, Liming and Chen, Jing M and Pisek, Jan and Schaaf, Crystal B and Strahler, Alan H},
year={2012},
title={Global clumping index map derived from the MODIS BRDF product},
journal={Remote Sensing of Environment},
volume={119},
pages={118--130}
}
@article{braghiere2019underestimation,
author = {Braghiere, R{\'e}nato Kerches and Quaife, T and Black, E and He, L and Chen, JM},
year = {2019},
title = {Underestimation of global photosynthesis in Earth System Models due to representation of vegetation structure},
journal = {Global Biogeochemical Cycles},
volume = {33},
number = {11},
pages = {1358--1369}
}
@article{wei2019global,
author = {Wei, Shanshan and Fang, Hongliang and Schaaf, Crystal B and He, Liming and Chen, Jing M},
year = {2019},
title = {Global 500 m clumping index product derived from MODIS BRDF data (2001--2017)},
journal = {Remote Sensing of Environment},
volume = {232},
pages = {111296}
}
GriddingMachine.Collector.elevation_collection
— Functionelevation_collection()
Method to create a general dataset collection for surface elevation. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Yamazaki et al., 2017)
2X_1Y_V1
(Yamazaki et al., 2017)@article{yamazaki2017high,
author = {Yamazaki, Dai and Ikeshima, Daiki and Tawatari, Ryunosuke and Yamaguchi, Tomohiro and O'Loughlin, Fiachra and Neal, Jeffery C and Sampson, Christopher C and Kanae, Shinjiro and
Bates, Paul D},
year = {2017},
title = {A high-accuracy map of global terrain elevations},
journal = {Geophysical Research Letters},
volume = {44},
number = {11},
pages = {5844--5853}
}
GriddingMachine.Collector.gpp_collection
— Functiongpp_collection()
Method to create a general dataset collection for gross primary productivity. Supported datasets are (click to view bibtex items)MPI_RS_2X_1M_YYYY_V1
(YYYY from 2001 to 2019; Tramontana et al., 2016)MPI_RS_2X_8D_YYYY_V1
(YYYY from 2001 to 2019; Tramontana et al., 2016)VPM_5X_8D_YYYY_V2
(YYYY from 2000 to 2019; Zhang et al., 2017)VPM_12X_8D_YYYY_V2
(YYYY from 2000 to 2019; Zhang et al., 2017)
MPI_RS_2X_1M_YYYY_V1
(YYYY from 2001 to 2019; Tramontana et al., 2016)MPI_RS_2X_8D_YYYY_V1
(YYYY from 2001 to 2019; Tramontana et al., 2016)VPM_5X_8D_YYYY_V2
(YYYY from 2000 to 2019; Zhang et al., 2017)VPM_12X_8D_YYYY_V2
(YYYY from 2000 to 2019; Zhang et al., 2017)@article{tramontana2016predicting,
author = {Tramontana, Gianluca and Jung, Martin and Schwalm, Christopher R and Ichii, Kazuhito and Camps-Valls, Gustau and R{\'a}duly, Botond and Reichstein, Markus and Arain, M Altaf and
Cescatti, Alessandro and Kiely, Gerard and others},
year = {2016},
title = {Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms},
journal = {Biogeosciences},
volume = {13},
number = {14},
pages = {4291--4313}
}
@article{zhang2017global,
author = {Zhang, Yao and Xiao, Xiangming and Wu, Xiaocui and Zhou, Sha and Zhang, Geli and Qin, Yuanwei and Dong, Jinwei},
year = {2017},
title = {A global moderate resolution dataset of gross primary production of vegetation for 2000--2016},
journal = {Scientific data},
volume = {4},
pages = {170165}
}
GriddingMachine.Collector.lai_collection
— Functionlai_collection()
Method to create a general dataset collection for leaf area index. Supported datasets are (click to view bibtex items)MODIS_2X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_2X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_10X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_10X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_20X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_20X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)
MODIS_2X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_2X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_10X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_10X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_20X_1M_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)MODIS_20X_8D_YYYY_V1
(YYYY from 2000 to 2020; Yuan et al., 2011)@article{yuan2011reprocessing,
author = {Yuan, Hua and Dai, Yongjiu and Xiao, Zhiqiang and Ji, Duoying and Shangguan, Wei},
year = {2011},
title = {Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling},
journal = {Remote Sensing of Environment},
volume = {115},
number = {5},
pages = {1171--1187}
}
GriddingMachine.Collector.land_mask_collection
— Functionland_mask_collection()
Method to create a general dataset collection for land mask. Supported datasets are (click to view bibtex items)
4X_1Y_V1
[(ERA5)]
GriddingMachine.Collector.latent_heat_collection
— Functionlatent_heat_collection()
Method to create a general dataset collection for latent heat flux. Supported datasets are (click to view bibtex items)MPI_RS_2X_8D_YYYY_V1
(YYYY from 2001 to 2015; Jung et al., 2015)MPI_RS_2X_1M_YYYY_V1
(YYYY from 2001 to 2015; Jung et al., 2015)
MPI_RS_2X_8D_YYYY_V1
(YYYY from 2001 to 2015; Jung et al., 2015)MPI_RS_2X_1M_YYYY_V1
(YYYY from 2001 to 2015; Jung et al., 2015)@article{jung2019fluxcom,
author = {Jung, Martin and Koirala, Sujan and Weber, Ulrich and Ichii, Kazuhito and Gans, Fabian and Camps-Valls, Gustau and Papale, Dario and Schwalm, Christopher and Tramontana, Gianluca and
Reichstein, Markus},
year = {2019},
title = {The {FLUXCOM} ensemble of global land-atmosphere energy fluxes},
journal = {Scientific Data},
volume = {6},
number = {1},
pages = {74}
}
GriddingMachine.Collector.leaf_chlorophyll_collection
— Functionleaf_chlorophyll_collection()
Method to create a general dataset collection for leaf chlorophyll content. Supported datasets are (click to view bibtex items)2X_7D_V1
(Croft et al., 2017)
2X_7D_V1
(Croft et al., 2017)@article{croft2020global,
author = {Croft, H and Chen, JM and Wang, R and Mo, G and Luo, S and Luo, X and He, L and Gonsamo, A and Arabian, J and Zhang, Y and others},
year = {2020},
title = {The global distribution of leaf chlorophyll content},
journal = {Remote Sensing of Environment},
volume = {236},
pages = {111479},
}
GriddingMachine.Collector.leaf_drymass_collection
— Functionleaf_drymass_collection()
Method to create a general dataset collection for leaf dry mass content. Supported datasets are (click to view bibtex items)12X_1Y_V1
(Moreno-Martinez et al., 2018)36X_1Y_V1
(Moreno-Martinez et al., 2018)
12X_1Y_V1
(Moreno-Martinez et al., 2018)36X_1Y_V1
(Moreno-Martinez et al., 2018)@article{moreno2018methodology,
author = {Moreno-Mart{\'i}nez, {\'A}lvaro and Camps-Valls, Gustau and Kattge, Jens and Robinson, Nathaniel and Reichstein, Markus and van Bodegom, Peter and Kramer, Koen and
Cornelissen, J Hans C and Reich, Peter and Bahn, Michael and others},
year = {2018},
title = {A methodology to derive global maps of leaf traits using remote sensing and climate data},
journal = {Remote sensing of environment},
volume = {218},
pages = {69--88}
}
GriddingMachine.Collector.leaf_nitrogen_collection
— Functionleaf_nitrogen_collection()
Method to create a general dataset collection for leaf nitrogen content. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Butler et al., 2017)2X_1Y_V2
(Boonman et al., 2020)12X_1Y_V3
(Moreno-Martinez et al., 2018)36X_1Y_V3
(Moreno-Martinez et al., 2018)
2X_1Y_V1
(Butler et al., 2017)2X_1Y_V2
(Boonman et al., 2020)12X_1Y_V3
(Moreno-Martinez et al., 2018)36X_1Y_V3
(Moreno-Martinez et al., 2018)@article{butler2017mapping,
author = {Butler, Ethan E and Datta, Abhirup and Flores-Moreno, Habacuc and Chen, Ming and Wythers, Kirk R and Fazayeli, Farideh and Banerjee, Arindam and Atkin, Owen K and Kattge, Jens and
Amiaud, Bernard and others},
year = {2017},
title = {Mapping local and global variability in plant trait distributions},
journal = {Proceedings of the National Academy of Sciences},
volume = {114},
number = {51},
pages = {E10937--E10946}
}
@article{boonman2020assessing,
author = {Boonman, Coline CF and Ben{\'i}tez-L{\'o}pez, Ana and Schipper, Aafke M and Thuiller, Wilfried and Anand, Madhur and Cerabolini, Bruno EL and Cornelissen, Johannes HC and
Gonzalez-Melo, Andres and Hattingh, Wesley N and Higuchi, Pedro and others},
year = {2020},
title = {Assessing the reliability of predicted plant trait distributions at the global scale},
journal = {Global Ecology and Biogeography},
volume = {29},
number = {6},
pages = {1034--1051}
}
@article{moreno2018methodology,
author = {Moreno-Mart{\'i}nez, {\'A}lvaro and Camps-Valls, Gustau and Kattge, Jens and Robinson, Nathaniel and Reichstein, Markus and van Bodegom, Peter and Kramer, Koen and
Cornelissen, J Hans C and Reich, Peter and Bahn, Michael and others},
year = {2018},
title = {A methodology to derive global maps of leaf traits using remote sensing and climate data},
journal = {Remote sensing of environment},
volume = {218},
pages = {69--88}
}
GriddingMachine.Collector.leaf_phosphorus_collection
— Functionleaf_phosphorus_collection()
Method to create a general dataset collection for leaf phosphorus content. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Butler et al., 2017)12X_1Y_V2
(Moreno-Martinez et al., 2018)36X_1Y_V2
(Moreno-Martinez et al., 2018)
2X_1Y_V1
(Butler et al., 2017)12X_1Y_V2
(Moreno-Martinez et al., 2018)36X_1Y_V2
(Moreno-Martinez et al., 2018)@article{butler2017mapping,
author = {Butler, Ethan E and Datta, Abhirup and Flores-Moreno, Habacuc and Chen, Ming and Wythers, Kirk R and Fazayeli, Farideh and Banerjee, Arindam and Atkin, Owen K and Kattge, Jens and
Amiaud, Bernard and others},
year = {2017},
title = {Mapping local and global variability in plant trait distributions},
journal = {Proceedings of the National Academy of Sciences},
volume = {114},
number = {51},
pages = {E10937--E10946}
}
@article{moreno2018methodology,
author = {Moreno-Mart{\'i}nez, {\'A}lvaro and Camps-Valls, Gustau and Kattge, Jens and Robinson, Nathaniel and Reichstein, Markus and van Bodegom, Peter and Kramer, Koen and
Cornelissen, J Hans C and Reich, Peter and Bahn, Michael and others},
year = {2018},
title = {A methodology to derive global maps of leaf traits using remote sensing and climate data},
journal = {Remote sensing of environment},
volume = {218},
pages = {69--88}
}
GriddingMachine.Collector.pft_collection
— Functionpft_collection()
Method to create a general dataset collection for plant function type ratio. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Lawrence and Chase, 2007)
2X_1Y_V1
(Lawrence and Chase, 2007)@article{lawrence2007representing,
author = {Lawrence, Peter J and Chase, Thomas N},
year = {2007},
title = {Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)},
journal = {Journal of Geophysical Research: Biogeosciences},
volume = {112},
pages = {G01023}
}
GriddingMachine.Collector.sif_collection
— Functionsif_collection()
Method to create a general dataset collection for solar-induced chlorophyll fluorescence. Supported datasets are (click to view bibtex items)TROPOMI_683_nX_1M_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683_nX_8D_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683DC_nX_1M_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683DC_nX_8D_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_740_nX_1M_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]TROPOMI_740_nX_8D_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018)) n = [1,2,4,5,12]TROPOMI_740DC_nX_1M_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]TROPOMI_740DC_nX_8D_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]OCO2_757_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_757DC_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_771_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_771DC_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)
TROPOMI_683_nX_1M_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683_nX_8D_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683DC_nX_1M_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_683DC_nX_8D_YYYY_V2
(YYYY from 2018 to 2020; Köhler et al., 2020) n = [1,2,4,5,12]TROPOMI_740_nX_1M_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]TROPOMI_740_nX_8D_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018)) n = [1,2,4,5,12]TROPOMI_740DC_nX_1M_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]TROPOMI_740DC_nX_8D_YYYY_V1
(YYYY from 2018 to 2022; Köhler et al., 2018) n = [1,2,4,5,12]OCO2_757_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_757DC_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_771_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)OCO2_771DC_5X_1M_YYYY_V3
(YYYY from 2014 to 2020; Sun et al., 2017)@article{kohler2018global,
author = {K{\"o}hler, Philipp and Frankenberg, Christian and Magney, Troy S and Guanter, Luis and Joiner, Joanna and Landgraf, Jochen},
year = {2018},
title = {Global retrievals of solar-induced chlorophyll fluorescence with {TROPOMI}: {F}irst results and intersensor comparison to {OCO-2}},
journal = {Geophysical Research Letters},
volume = {45},
number = {19},
pages = {10,456--10,463}
}
@article{kohler2020global,
author = {K{\"o}hler, Philipp and Behrenfeld, Michael J and Landgraf, Jochen and Joiner, Joanna and Magney, Troy S and Frankenberg, Christian},
year = {2020},
title = {Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with {TROPOMI}},
journal = {Geophysical Research Letters},
volume = {47},
number = {15},
pages = {e2020GL087541}
}
@article{sun2017oco,
author = {Sun, Ying and Frankenberg, Christian and Wood, Jeffery D and Schimel, DS and Jung, Martin and Guanter, Luis and Drewry, DT and Verma, Manish and Porcar-Castell, Albert and Griffis, Timothy J and others},
year = {2017},
title = {OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence},
journal = {Science},
volume = {358},
number = {6360}
}
GriddingMachine.Collector.sil_collection
— Functionsil_collection()
Method to create a general dataset collection for solar-induced luminescence. Supported datasets are (click to view bibtex items)SIL_20X_1Y_V1
(Köhler et al., 2021)
SIL_20X_1Y_V1
(Köhler et al., 2021)@article{kohler2021mineral,
author = {K{\"o}hler, Philipp and Fischer, Woodward W and Rossman, George R and Grotzinger, John P and Doughty, Russell and Wang, Yujie and Yin, Yi and Frankenberg, Christian},
year = {2021},
title = {Mineral luminescence observed from space},
journal = {Geophysical Research Letters},
volume = {48},
number = {19},
pages = {e2021GL095227}
}
GriddingMachine.Collector.sla_collection
— Functionsla_collection()
Method to create a general dataset collection for SLA (specific leaf area). Supported datasets are (click to view bibtex items)2X_1Y_V1
(Butler et al., 2017)2X_1Y_V2
(Boonman et al., 2020)12X_1Y_V3
(Moreno-Martinez et al., 2018)36X_1Y_V3
(Moreno-Martinez et al., 2018)
2X_1Y_V1
(Butler et al., 2017)2X_1Y_V2
(Boonman et al., 2020)12X_1Y_V3
(Moreno-Martinez et al., 2018)36X_1Y_V3
(Moreno-Martinez et al., 2018)@article{butler2017mapping,
author = {Butler, Ethan E and Datta, Abhirup and Flores-Moreno, Habacuc and Chen, Ming and Wythers, Kirk R and Fazayeli, Farideh and Banerjee, Arindam and Atkin, Owen K and Kattge, Jens and
Amiaud, Bernard and others},
year = {2017},
title = {Mapping local and global variability in plant trait distributions},
journal = {Proceedings of the National Academy of Sciences},
volume = {114},
number = {51},
pages = {E10937--E10946}
}
@article{boonman2020assessing,
author = {Boonman, Coline CF and Ben{\'i}tez-L{\'o}pez, Ana and Schipper, Aafke M and Thuiller, Wilfried and Anand, Madhur and Cerabolini, Bruno EL and Cornelissen, Johannes HC and
Gonzalez-Melo, Andres and Hattingh, Wesley N and Higuchi, Pedro and others},
year = {2020},
title = {Assessing the reliability of predicted plant trait distributions at the global scale},
journal = {Global Ecology and Biogeography},
volume = {29},
number = {6},
pages = {1034--1051}
}
@article{moreno2018methodology,
author = {Moreno-Mart{\'i}nez, {\'A}lvaro and Camps-Valls, Gustau and Kattge, Jens and Robinson, Nathaniel and Reichstein, Markus and van Bodegom, Peter and Kramer, Koen and
Cornelissen, J Hans C and Reich, Peter and Bahn, Michael and others},
year = {2018},
title = {A methodology to derive global maps of leaf traits using remote sensing and climate data},
journal = {Remote sensing of environment},
volume = {218},
pages = {69--88}
}
GriddingMachine.Collector.soil_color_collection
— Functionsoil_color_collection()
Method to create a general dataset collection for soil color class to use with soil albedo. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Lawrence and Chase, 2007)
2X_1Y_V1
(Lawrence and Chase, 2007)@article{lawrence2007representing,
author = {Lawrence, Peter J and Chase, Thomas N},
year = {2007},
title = {Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)},
journal = {Journal of Geophysical Research: Biogeosciences},
volume = {112},
pages = {G01023}
}
GriddingMachine.Collector.soil_hydraulics_collection
— Functionsoil_hydraulics_collection()
Method to create a general dataset collection for soil hydraulic parameters (saturated hydraulic conductance - KSAT, residual soil water content - SWCR, saturated soil water content - SWCS, van Genuchten α - VGA, van Genuchten n - VGN). Supported datasets are (click to view bibtex items)SWCR_120X_1Y_V1
(Dai et al., 2019)SWCR_12X_1Y_V1
(regridded; Dai et al., 2019)SWCS_120X_1Y_V1
(Dai et al., 2019)SWCS_12X_1Y_V1
(regridded; Dai et al., 2019)VGA_120X_1Y_V1
(Dai et al., 2019)VGA_12X_1Y_V1
(regridded; Dai et al., 2019)VGN_120X_1Y_V1
(Dai et al., 2019)VGN_12X_1Y_V1
(regridded; Dai et al., 2019)KSAT_100X_1Y_V2
(Gupta et al., 2021)
SWCR_120X_1Y_V1
(Dai et al., 2019)SWCR_12X_1Y_V1
(regridded; Dai et al., 2019)SWCS_120X_1Y_V1
(Dai et al., 2019)SWCS_12X_1Y_V1
(regridded; Dai et al., 2019)VGA_120X_1Y_V1
(Dai et al., 2019)VGA_12X_1Y_V1
(regridded; Dai et al., 2019)VGN_120X_1Y_V1
(Dai et al., 2019)VGN_12X_1Y_V1
(regridded; Dai et al., 2019)KSAT_100X_1Y_V2
(Gupta et al., 2021)@article{dai2019global,
author = {Dai, Yongjiu and Xin, Qinchuan and Wei, Nan and Zhang, Yonggen and Shangguan, Wei and Yuan, Hua and Zhang, Shupeng and Liu, Shaofeng and Lu, Xingjie},
year = {2019},
title = {A global high-resolution data set of soil hydraulic and thermal properties for land surface modeling},
journal = {Journal of Advances in Modeling Earth Systems},
volume = {11},
number = {9},
pages = {2996--3023}
}
@article{gupta2021global,
author = {Gupta, Surya and Lehmann, Peter and Bonetti, Sara and Papritz, Andreas and Or, Dani},
year = {2021},
title = {Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate-Based GeoTransfer Function (CoGTF) Framework},
journal = {Journal of Advances in Modeling Earth Systems},
volume = {13},
number = {4},
pages = {e2020MS002242}
}
GriddingMachine.Collector.surface_area_collection
— Functionsurface_area_collection()
Method to create a general dataset collection for earth surface area. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Lawrence and Chase, 2007)1X_1Y_V1
(regridded; Lawrence and Chase, 2007)
2X_1Y_V1
(Lawrence and Chase, 2007)1X_1Y_V1
(regridded; Lawrence and Chase, 2007)@article{lawrence2007representing,
author = {Lawrence, Peter J and Chase, Thomas N},
year = {2007},
title = {Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)},
journal = {Journal of Geophysical Research: Biogeosciences},
volume = {112},
pages = {G01023}
}
GriddingMachine.Collector.tree_density_collection
— Functiontree_density_collection()
Method to create a general dataset collection for tree density (number of trees per area). Supported datasets are (click to view bibtex items)120X_1Y_V1
(Crowther et al., 2017)2X_1Y_V1
(regridded; Crowther et al., 2020)
120X_1Y_V1
(Crowther et al., 2017)2X_1Y_V1
(regridded; Crowther et al., 2020)@article{crowther2015mapping,
author = {Crowther, Thomas W and Glick, Henry B and Covey, Kristofer R and Bettigole, Charlie and Maynard, Daniel S and Thomas, Stephen M and Smith, Jeffrey R and Hintler, Gregor and
Duguid, Marlyse C and Amatulli, Giuseppe and others},
year = {2015},
title = {Mapping tree density at a global scale},
journal = {Nature},
volume = {525},
number = {7568},
pages = {201--205}
}
GriddingMachine.Collector.vcmax_collection
— Functionvcmax_collection()
Method to create a general dataset collection for Vcmax. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Smith et al., 2019)2X_1Y_V2
(Luo et al., 2019)CESM_1X_1M_V3
CESM model outputCESM_LUNA_1X_1M_V3
CESM model output (LUNA model)
2X_1Y_V1
(Smith et al., 2019)2X_1Y_V2
(Luo et al., 2019)CESM_1X_1M_V3
CESM model outputCESM_LUNA_1X_1M_V3
CESM model output (LUNA model)@article{smith2019global,
author = {Smith, Nicholas G. and Keenan, Trevor F. and Prentice, I. Colin and Wang, Han and Wright, Ian J. and Niinemets, Ülo and Crous, Kristine Y. and Domingues, Tomas F. and
Guerrieri, Rossella and {Yoko Ishida}, F. and Zhou, Shuangxi},
year = {2019},
title = {Global photosynthetic capacity is optimized to the environment},
journal = {Ecology Letters},
volume = {22},
number = {3},
pages = {506–517}
}
@article{luo2021global,
author = {Luo, Xiangzhong and Keenan, Trevor F. and Chen, Jing M. and Croft, Holly and {Colin Prentice}, I. and Smith, Nicholas G. and Walker, Anthony P. and Wang, Han and Wang, Rong and
Xu, Chonggang and Zhang, Yao},
year = {2021},
title = {Global variation in the fraction of leaf nitrogen allocated to photosynthesis},
journal = {Nature Communications},
volume = {12},
number = {1},
pages = {4866}
}
GriddingMachine.Collector.vegetation_cover_fraction
— Functionvegetation_cover_fraction()
Method to create a general dataset collection for vegetation cover fraction. Supported datasets are (click to view bibtex items)MODIS_MOD44B_2X_1Y_V1
(DiMiceli et al., 2022)
MODIS_MOD44B_2X_1Y_V1
(DiMiceli et al., 2022)@article{dimiceli2022modismod44b,
author = {DiMiceli, C. and Sohlberg, R. and Townshend, J.},
doi = {10.5067/MODIS/MOD44B.061},
year = {2022},
title = {MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V061},
journal = {NASA EOSDIS Land Processes DAAC}
}
GriddingMachine.Collector.wood_density_collection
— Functionwood_density_collection()
Method to create a general dataset collection for wood density. Supported datasets are (click to view bibtex items)2X_1Y_V1
(Boonman et al., 2020)
2X_1Y_V1
(Boonman et al., 2020)@article{boonman2020assessing,
author = {Boonman, Coline CF and Ben{\'i}tez-L{\'o}pez, Ana and Schipper, Aafke M and Thuiller, Wilfried and Anand, Madhur and Cerabolini, Bruno EL and Cornelissen, Johannes HC and
Gonzalez-Melo, Andres and Hattingh, Wesley N and Higuchi, Pedro and others},
year = {2020},
title = {Assessing the reliability of predicted plant trait distributions at the global scale},
journal = {Global Ecology and Biogeography},
volume = {29},
number = {6},
pages = {1034--1051}
}
Query gridded datasets
GriddingMachine.Collector.query_collection
— Functionquery_collection(ds::GriddedCollection)
query_collection(ds::GriddedCollection, version::String)
query_collection(artname::String)
This method queries the local data path from collection for the default data, given
ds
GriddedCollection
type collectionversion
Queried dataset version (must be inds.SUPPORTED_COMBOS
)artname
Artifact name
Examples
dat_file = query_collection(canopy_height_collection());
dat_file = query_collection(canopy_height_collection(), "20X_1Y_V1");
Clean up collections
GriddingMachine.Collector.clean_collections!
— Functionclean_collections!(selection::String="old")
clean_collections!(selection::Vector{String})
clean_collections!(selection::GriddedCollection)
This method cleans up all selected artifacts of GriddingMachine.jl (through identify the GRIDDINGMACHINE
file in the artifacts), given
selection
- A string indicating which artifacts to clean up
old
Artifacts from an old version of GriddingMachine.jl (default)all
All Artifacts from GriddingMachine.jl
- A vector of artifact names
- A
GriddedCollection
type collection
- A string indicating which artifacts to clean up
Examples
clean_collections!();
clean_collections!("old");
clean_collections!("all");
clean_collections!(["PFT_2X_1Y_V1"]);
clean_collections!(pft_collection());
Sync collections
GriddingMachine.Collector.sync_collections!
— Functionsync_collections!()
sync_collections!(gcs::GriddedCollection)
Sync collection datasets to local drive, given
gc
GriddedCollection
type collection
Indexer
GriddingMachine.Indexer.lat_ind
— Functionlat_ind(lat::Number; res::Number=1)
Round the latitude and return the index in a matrix, given
lat
Latituderes
Resolution in latitude
Examples
ilat = lat_ind(0.3);
ilat = lat_ind(0.3; res=0.5);
GriddingMachine.Indexer.lon_ind
— Functionlon_ind(lon::Number; res::Number=1)
Round the longitude and return the index in a matrix, given
lon
Longituderes
Resolution in longitude
Examples
ilon = lon_ind(90.3);
ilon = lon_ind(90.3; res=0.5);
GriddingMachine.Indexer.read_LUT
— Functionread_LUT(fn::String, FT::DataType = Float32; include_std::Bool = true)
read_LUT(fn::String, cyc::Int, FT::DataType = Float32; include_std::Bool = true)
read_LUT(fn::String, lat::Number, lon::Number, FT::DataType = Float32; include_std::Bool = true, interpolation::Bool = false)
read_LUT(fn::String, lat::Number, lon::Number, cyc::Int, FT::DataType = Float32; include_std::Bool = true, interpolation::Bool = false)
Read the entire look-up-table from collection, given
fn
Path to the target fileFT
Float number type, default is Float32include_std
If true, read the standard deviation as well (default is true)cyc
Cycle number, such as 8 for data in Augest in 11M
resolution datasetlat
Latitude in°
lon
Longitude in°
res
Spatial resolution in°
interpolation
If true, interpolate the dataset
Examples
read_LUT(query_collection(vcmax_collection()));
read_LUT(query_collection(vcmax_collection()), Float64);
read_LUT(query_collection(gpp_collection()), 8);
read_LUT(query_collection(gpp_collection()), 8, Float64);
read_LUT(query_collection(gpp_collection()), 30, 116);
read_LUT(query_collection(gpp_collection()), 30, 116, Float64);
read_LUT(query_collection(gpp_collection()), 30, 116, Float64; interpolation=true);
read_LUT(query_collection(gpp_collection()), 30, 116, 8);
read_LUT(query_collection(gpp_collection()), 30, 116, 8, Float64);
read_LUT(query_collection(gpp_collection()), 30, 116, 8, Float64; interpolation=true);
Requestor
GriddingMachine.Requestor.request_LUT
— Functionrequest_LUT(artname::String,
lat::Number,
lon::Number,
cyc::Int = 0;
include_std::Bool = false,
interpolation::Bool = false,
port::Int = 5055,
server::String = "http://tropo.gps.caltech.edu",
user::String="Anonymous")
Request data from the server, given
artname
Artifact full name such asLAI_MODIS_2X_8D_2017_V1
lat
Latitudelon
Longitudecyc
Cycle index, default is 0 (read entire time series)include_std
If true, include the standard deviationinterpolation
If true, interpolate the data linearlyport
Port number for the GriddingMachine serverserver
Server address such ashttps://tropo.gps.caltech.edu
user
User name (non-registered users need to wait for 5 seconds before the server processes the request)
Examples
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5; interpolation=true);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5, 8);
request_LUT("LAI_MODIS_2X_8D_2017_V1", 30.5, 115.5, 8; interpolation=true);