Library
Documenting the public user interface.
Boundary conditions
Oceananigans.BoundaryCondition
— Type.BoundaryCondition{C<:BCType}(condition)
Construct a boundary condition of type C
with a condition
that may be given by a number, an array, or a function with signature:
condition(i, j, grid, time, iteration, U, Φ, parameters) = # function definition
that returns a number and where i
and j
are indices along the boundary.
Boundary condition types include Periodic
, Flux
, Value
, Gradient
, and NoPenetration
.
Oceananigans.CoordinateBoundaryConditions
— Type.CoordinateBoundaryConditions(left, right)
A set of two BoundaryCondition
s to be applied along a coordinate x, y, or z.
The left
boundary condition is applied on the negative or lower side of the coordinate while the right
boundary condition is applied on the positive or higher side.
Oceananigans.Dirchlet
— Type.Dirchlet
An alias for the Value
boundary condition type.
Oceananigans.FieldBoundaryConditions
— Type.FieldBoundaryConditions
An alias for NamedTuple{(:x, :y, :z)}
that represents a set of three CoordinateBoundaryCondition
s applied to a field along x, y, and z.
Oceananigans.FieldBoundaryConditions
— Method.FieldBoundaryConditions(x, y, z)
Construct a FieldBoundaryConditions
using a CoordinateBoundaryCondition
for each of the x
, y
, and z
coordinates.
Oceananigans.Flux
— Type.Flux
A type specifying a boundary condition on the flux of a field.
Oceananigans.Gradient
— Type.Gradient
A type specifying a boundary condition on the derivative or gradient of a field. Also called a Neumann boundary condition.
Oceananigans.Neumann
— Type.Neumann
An alias for the Gradient
boundary condition type.
Oceananigans.Periodic
— Type.Periodic
A type specifying a periodic boundary condition.
A condition may not be specified with a Periodic
boundary condition.
Oceananigans.Value
— Type.Value
A type specifying a boundary condition on the value of a field. Also called a Dirchlet boundary condition.
Oceananigans.ChannelBCs
— Method.ChannelBCs(; north = BoundaryCondition(Flux, nothing),
south = BoundaryCondition(Flux, nothing),
top = BoundaryCondition(Flux, nothing),
bottom = BoundaryCondition(Flux, nothing))
Construct FieldBoundaryConditions
with Periodic
boundary conditions in the x direction and specified north
(+y), south
(-y), top
(+z) and bottom
(-z) boundary conditions for u, v, and tracer fields.
ChannelBCs
cannot be applied to the the vertical velocity w.
Oceananigans.ChannelSolutionBCs
— Method.ChannelSolutionBCs(u=ChannelBCs(), ...)
Construct SolutionBoundaryConditions
for a reentrant channel model configuration with solution fields u
, v
, w
, T
, and S
specified by keyword arguments.
By default ChannelBCs
are applied to u
, v
, T
, and S
and ChannelBCs(top=NoPenetrationBC(), bottom=NoPenetrationBC())
is applied to w
.
Use ChannelBCs
when constructing non-default boundary conditions for u
, v
, w
, T
, S
.
Oceananigans.HorizontallyPeriodicBCs
— Method.HorizontallyPeriodicBCs(; top = BoundaryCondition(Flux, nothing),
bottom = BoundaryCondition(Flux, nothing))
Construct FieldBoundaryConditions
with Periodic
boundary conditions in the x and y directions and specified top
(+z) and bottom
(-z) boundary conditions for u, v, and tracer fields.
HorizontallyPeriodicBCs
cannot be applied to the the vertical velocity w.
Oceananigans.HorizontallyPeriodicSolutionBCs
— Method.HorizontallyPeriodicSolutionBCs(u=HorizontallyPeriodicBCs(), ...)
Construct SolutionBoundaryConditions
for a horizontally-periodic model configuration with solution fields u
, v
, w
, T
, and S
specified by keyword arguments.
By default HorizontallyPeriodicBCs
are applied to u
, v
, T
, and S
and HorizontallyPeriodicBCs(top=NoPenetrationBC(), bottom=NoPenetrationBC())
is applied to w
.
Use HorizontallyPeriodicBCs
when constructing non-default boundary conditions for u
, v
, w
, T
, S
.
Oceananigans.SolutionBoundaryConditions
— Method.SolutionBoundaryConditions(tracers, proposal_bcs)
Construct a NamedTuple
of FieldBoundaryConditions
for a model with fields u
, v
, w
, and tracers
from the proposal boundary conditions proposal_bcs
, which must contain the boundary conditions on u
, v
, and w
and may contain some or all of the boundary conditions on tracers
.
Buoyancy
Oceananigans.BuoyancyTracer
— Type.BuoyancyTracer <: AbstractBuoyancy{Nothing}
Type indicating that the tracer b
represents buoyancy.
Oceananigans.LinearEquationOfState
— Type.LinearEquationOfState{FT} <: AbstractEquationOfState
Linear equation of state for seawater.
Oceananigans.LinearEquationOfState
— Type.LinearEquationOfState([FT=Float64;] α=1.67e-4, β=7.80e-4)
Returns parameters for a linear equation of state for seawater with thermal expansion coefficient α
[K⁻¹] and haline contraction coefficient β
[ppt⁻¹]. The buoyancy perturbation associated with a linear equation of state is
Default constants are taken from Table 1.2 (page 33) of Vallis, "Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation" (2ed, 2017).
Oceananigans.SeawaterBuoyancy
— Type.SeawaterBuoyancy{G, EOS} <: AbstractBuoyancy{EOS}
Buoyancy model for temperature- and salt-stratified seawater.
Oceananigans.SeawaterBuoyancy
— Type.SeawaterBuoyancy([FT=Float64;] gravitational_acceleration = g_Earth,
equation_of_state = LinearEquationOfState(FT))
Returns parameters for a temperature- and salt-stratified seawater buoyancy model with a gravitational_acceleration
constant (typically called 'g'), and an equation_of_state
that related temperature and salinity (or conservative temperature and absolute salinity) to density anomalies and buoyancy.
Clock
Oceananigans.Clock
— Type.Clock{T<:Number}
Clock{T}(time, iteration)
Keeps track of the current time
and iteration
number.
Coriolis
Oceananigans.FPlane
— Type.FPlane{T} <: AbstractRotation
A parameter object for constant rotation around a vertical axis.
Oceananigans.FPlane
— Type.FPlane([T=Float64;] f)
Returns a parameter object for constant rotation at the angular frequency 2f
, and therefore with background vorticity f
, around a vertical axis.
Also called FPlane
, after the "f-plane" approximation for the local effect of Earth's rotation in a planar coordinate system tangent to the Earth's surface.
Diagnostics
Oceananigans.CFL
— Type.CFL{D, S}
An object for computing the Courant-Freidrichs-Lewy (CFL) number.
Oceananigans.CFL
— Method.CFL(Δt [, timescale=Oceananigans.cell_advection_timescale])
Returns an object for computing the Courant-Freidrichs-Lewy (CFL) number associated with time step or TimeStepWizard
Δt
and timescale
.
See also AdvectiveCFL
and DiffusiveCFL
Oceananigans.FieldMaximum
— Type.FieldMaximum(mapping, field)
An object for calculating the maximum of a mapping
function applied element-wise to field
.
Examples
julia> model = BasicModel(N=(16, 16, 16), L=(1, 1, 1));
julia> max_abs_u = FieldMaximum(abs, model.velocities.u);
julia> max_w² = FieldMaximum(x->x^2, model.velocities.w);
Oceananigans.HorizontalAverage
— Type.HorizontalAverage{F, R, P, I, Ω} <: AbstractDiagnostic
A diagnostic for computing horizontal average of a field or the product of multiple fields.
Oceananigans.HorizontalAverage
— Method.HorizontalAverage(model, fields; frequency=nothing, interval=nothing, return_type=Array)
Construct a HorizontalAverage
diagnostic for model
.
After the horizontal average is computed it will be stored in the profile
property.
The HorizontalAverage
can be used as a callable object that computes and returns the horizontal average.
If a single field is passed to fields
the the horizontal average of that single field will be computed. If multiple fields are passed to fields
, then the horizontal average of their product will be computed.
A frequency
or interval
(or both) can be passed to indicate how often to run this diagnostic if it is part of model.diagnostics
. frequency
is a number of iterations while interval
is a time interval in units of model.clock.time
.
A return_type
can be used to specify the type returned when the HorizontalAverage
is used as a callable object. The default return_type=Array
is useful when running a GPU model and you want to save the output to disk by passing it to an output writer.
Warning
Right now taking products of multiple fields does not take into account their locations on the staggered grid and no attempt is made to interpolate all the different fields onto a common location before calculating the product.
Oceananigans.NaNChecker
— Type.NaNChecker{F} <: AbstractDiagnostic
A diagnostic that checks for NaN
values and aborts the simulation if any are found.
Oceananigans.NaNChecker
— Method.NaNChecker(model; frequency, fields)
Construct a NaNChecker
for model
. fields
should be a Dict{Symbol,Field}
. A frequency
should be passed to indicate how often to check for NaNs (in number of iterations).
Oceananigans.Timeseries
— Type.Timeseries{D, Ω, I, T, TT} <: AbstractDiagnostic
A diagnostic for collecting and storing timeseries.
Oceananigans.Timeseries
— Method.Timeseries(diagnostic, model; frequency=nothing, interval=nothing)
A Timeseries
Diagnostic
that records a time series of diagnostic(model)
.
Example
julia> model = BasicModel(N=(16, 16, 16), L=(1, 1, 1));
julia> max_u = Timeseries(FieldMaximum(abs, model.velocities.u), model; frequency=1)
julia> model.diagnostics[:max_u] = max_u; data(model.velocities.u) .= π; time_step!(model, Nt=3, Δt=1e-16)
julia> max_u.data
3-element Array{Float64,1}:
3.141592653589793
3.1415926025389127
3.1415925323439517
Oceananigans.Timeseries
— Method.Timeseries(diagnostics::NamedTuple, model; frequency=nothing, interval=nothing)
A Timeseries
Diagnostic
that records a NamedTuple
of time series of diag(model)
for each diag
in diagnostics
.
Example
julia> model = BasicModel(N=(16, 16, 16), L=(1, 1, 1)); Δt = 1.0;
julia> cfl = Timeseries((adv=AdvectiveCFL(Δt), diff=DiffusiveCFL(Δt)), model; frequency=1);
julia> model.diagnostics[:cfl] = cfl; time_step!(model, Nt=3, Δt=Δt)
julia> cfl.data
(adv = [0.0, 0.0, 0.0, 0.0], diff = [0.0002688, 0.0002688, 0.0002688, 0.0002688])
julia> cfl.adv
4-element Array{Float64,1}:
0.0
0.0
0.0
0.0
Oceananigans.AdvectiveCFL
— Method.AdvectiveCFL(Δt)
Returns an object for computing the Courant-Freidrichs-Lewy (CFL) number associated with time step or TimeStepWizard
Δt
and the time scale for advection across a cell.
Example
julia> model = BasicModel(N=(16, 16, 16), L=(8, 8, 8));
julia> cfl = AdvectiveCFL(1.0);
julia> data(model.velocities.u) .= π;
julia> cfl(model)
6.283185307179586
Oceananigans.DiffusiveCFL
— Method.DiffusiveCFL(Δt)
Returns an object for computing the Courant-Freidrichs-Lewy (CFL) number associated with time step or TimeStepWizard
Δt
and the time scale for diffusion across a cell associated with model.closure
.
Example
julia> model = BasicModel(N=(16, 16, 16), L=(1, 1, 1));
julia> cfl = DiffusiveCFL(0.1);
julia> cfl(model)
2.688e-5
Fields
Oceananigans.CellField
— Type.CellField
A field defined at the cell centers. Used for pressure and tracers.
Oceananigans.CellField
— Method.CellField([T=eltype(grid)], arch, grid)
Return a CellField
on architecture arch
and grid
.
Oceananigans.FaceFieldX
— Type.FaceFieldX
A field defined at the faces along the x-direction. Used for horizontal velocity u.
Oceananigans.FaceFieldX
— Method.FaceFieldX([T=eltype(grid)], arch, grid)
Return a FaceFieldX
on architecture arch
and grid
.
Oceananigans.FaceFieldY
— Type.FaceFieldY
A field defined at the faces along the y-direction. Used for horizontal velocity v.
Oceananigans.FaceFieldY
— Method.FaceFieldY([T=eltype(grid)], arch, grid)
Return a FaceFieldY
on architecture arch
and grid
.
Oceananigans.FaceFieldZ
— Type.FaceFieldY
A field defined at the faces along the z-direction. Used for vertical velocity w.
Oceananigans.FaceFieldZ
— Method.FaceFieldZ([T=eltype(grid)], arch, grid)
Return a FaceFieldZ
on architecture arch
and grid
.
Oceananigans.Field
— Type.Field{LX, LY, LZ, A, G} <: AbstractField{A, G}
A field defined at the location (LX
, LY
, LZ
) which can be either Cell
or Face
.
Oceananigans.Field
— Method.Field(Lx, Ly, Lz, data, grid)
Construct a Field
on grid
using the array data
with location defined by Lx
, Ly
, and Lz
which are Cell
or Face
.
Oceananigans.Field
— Method.Field(L::Tuple, data::AbstractArray, grid)
Construct a Field
on grid
using the array data
with location defined by the tuple L
of length 3 whose elements are Cell
or Face
.
Oceananigans.Field
— Method.Field(L::Tuple, arch::AbstractArchitecture, grid)
Construct a Field
on architecture arch
and grid
with location defined by the tuple L
of length 3 whose elements are Cell
or Face
.
Oceananigans.data
— Method.Returns a view over the interior points of the field.data
.
Oceananigans.set!
— Method.Set the CPU field u
data to the function f(x, y, z)
.
Oceananigans.set!
— Method.Set the CPU field u
to the array v
.
Oceananigans.set!
— Method.set!(model; kwargs...)
Set velocity and tracer fields of model
. The keyword arguments kwargs...
take the form name=data
, where name
refers to one of the fields of model.velocities
or model.tracers
, and the data
may be an array, a function with arguments (x, y, z)
, or any data type for which a set!(ϕ::AbstractField, data)
function exists.
Example
model = Model(grid=RegularCartesianGrid(N=(32, 32, 32), L=(1, 1, 1))
# Set u to a parabolic function of z, v to random numbers damped
# at top and bottom, and T to some silly array of half zeros,
# half random numbers.
u₀(x, y, z) = z/model.grid.Lz * (1 + z/model.grid.Lz)
v₀(x, y, z) = 1e-3 * rand() * u₀(x, y, z)
T₀ = rand(size(model.grid)...)
T₀[T₀ .< 0.5] .= 0
set!(model, u=u₀, v=v₀, T=T₀)
Forcing
Oceananigans.SimpleForcing
— Type.SimpleForcing{X, Y, Z, F, P}
Callable object for specifying 'simple' forcings of x, y, z, t
and optionally parameters
of type P
at location X, Y, Z
.
Oceananigans.SimpleForcing
— Method.SimpleForcing([location=(Cell, Cell, Cell),] forcing; parameters=nothing)
Construct forcing for a field at location
using forcing::Function
, and optionally with parameters
. If parameters=nothing
, forcing
must have the signature
`forcing(x, y, z, t)`;
otherwise it must have the signature
`forcing(x, y, z, t, parameters)`.
Examples
julia> const a = 2.1
julia> fun_forcing(x, y, z, t) = a * exp(z) * cos(t)
julia> u_forcing = SimpleForcing(fun_forcing)
julia> parameterized_forcing(x, y, z, t, p) = p.μ * exp(z/p.λ) * cos(p.ω*t)
julia> v_forcing = SimpleForcing(parameterized_forcing, parameters=(μ=42, λ=0.1, ω=π))
Oceananigans.ModelForcing
— Method.ModelForcing(; u=zeroforcing, v=zeroforcing, w=zeroforcing, tracer_forcings...)
Return a named tuple of forcing functions for each solution field.
Example
julia> u_forcing = SimpleForcing((x, y, z, t) -> exp(z) * cos(t))
julia> model = Model(forcing=ModelForcing(u=u_forcing))
Grids
Oceananigans.RegularCartesianGrid
— Type.RegularCartesianGrid{T<:AbstractFloat, R<:AbstractRange} <: AbstractGrid{T}
A Cartesian grid with with constant grid spacings Δx
, Δy
, and Δz
between cell centers and cell faces.
Oceananigans.RegularCartesianGrid
— Method.RegularCartesianGrid([T=Float64]; N, L)
Creates a RegularCartesianGrid
with N = (Nx, Ny, Nz)
grid points and domain size L = (Lx, Ly, Lz)
, where constants are stored using floating point values of type T
.
Additional properties
(xC, yC, zC)::AbstractRange
: (x, y, z) coordinates of cell centers(xF, yF, zF)::AbstractRange
: (x, y, z) coordinates of cell faces(Hx, Hy, Hz)::Int
: Halo size in the (x, y, z)-direction(Tx, Ty, Tz)::Int
: "Total" grid size (interior + halo points) in the (x, y, z)-direction
Examples
julia> grid = RegularCartesianGrid(N=(32, 32, 32), L=(1, 1, 1))
RegularCartesianGrid{Float64}
resolution (Nx, Ny, Nz) = (32, 32, 32)
halo size (Hx, Hy, Hz) = (1, 1, 1)
domain (Lx, Ly, Lz) = (1.0, 1.0, 1.0)
grid spacing (Δx, Δy, Δz) = (0.03125, 0.03125, 0.03125)
julia> grid = RegularCartesianGrid(Float32; N=(32, 32, 16), L=(8, 8, 2))
RegularCartesianGrid{Float32}
resolution (Nx, Ny, Nz) = (32, 32, 16)
halo size (Hx, Hy, Hz) = (1, 1, 1)
domain (Lx, Ly, Lz) = (8.0f0, 8.0f0, 2.0f0)
grid spacing (Δx, Δy, Δz) = (0.25f0, 0.25f0, 0.125f0)
Models
Oceananigans.Model
— Method.Model(; grid, kwargs...)
Construct an Oceananigans.jl
model on grid
.
Keyword arguments
grid
: (required) The resolution and discrete geometry on whichmodel
is solved. Currently the only option isRegularCartesianGrid
.architecture
:CPU()
orGPU()
. The computer architecture used to time-stepmodel
.float_type
:Float32
orFloat64
. The floating point type used formodel
data.closure
: The turbulence closure formodel
. SeeTurbulenceClosures
.buoyancy
: Buoyancy model parameters.coriolis
: Parameters for the background rotation rate of the model.forcing
: User-defined forcing functions that contribute to solution tendencies.boundary_conditions
: User-defined boundary conditions for model fields. Can be eitherSolutionBoundaryConditions
orModelBoundaryConditions
. SeeBoundaryConditions
,HorizontallyPeriodicSolutionBCs
, andChannelSolutionBCs
.parameters
: User-defined parameters for use in user-defined forcing functions and boundary condition functions.
Oceananigans.BasicModel
— Method.BasicModel(; N, L, ν=ν₀, κ=κ₀, float_type=Float64, kwargs...)
Construct a "Basic" Model
with resolution N
, domain extent L
, precision float_type
, and constant isotropic viscosity and diffusivity ν
, and κ
.
Additional kwargs
are passed to the regular Model
constructor.
Oceananigans.ChannelModel
— Method.ChannelModel(; kwargs...)
Construct a Model
with walls in the y-direction. This is done by imposing FreeSlip
boundary conditions in the y-direction instead of Periodic
.
kwargs are passed to the regular Model
constructor.
Output writers
Oceananigans.Checkpointer
— Type.Checkpointer{I, T, P, A} <: AbstractOutputWriter
An output writer for checkpointing models to a JLD2 file from which models can be restored.
Oceananigans.Checkpointer
— Method.Checkpointer(model; frequency=nothing, interval=nothing, dir=".", prefix="checkpoint",
force=false, verbose=false,
properties = [:architecture, :boundary_conditions, :grid, :clock,
:eos, :constants, :closure, :velocities, :tracers,
:timestepper])
Construct a Checkpointer
that checkpoints the model to a JLD2 file every so often as specified by frequency
or interval
. The model.clock.iteration
is included in the filename to distinguish between multiple checkpoint files.
Note that extra model properties
can be safely specified, but removing crucial properties such as :velocities
will make restoring from the checkpoint impossible.
The checkpoint file is generated by serializing model properties to JLD2. However, functions cannot be serialized to disk (at least not with JLD2). So if a model property contains a reference somewhere in its hierarchy it will not be included in the checkpoint file (and you will have to manually restore them).
Keyword arguments
frequency::Int
: Save output everyn
model iterations.interval::Int
: Save output everyt
units of model clock time.dir::String
: Directory to save output to. Default: "." (current working directory).prefix::String
: Descriptive filename prefixed to all output files. Default: "checkpoint".force::Bool
: Remove existing files if their filenames conflict. Default:false
.verbose::Bool
: Log what the output writer is doing with statistics on compute/write times and file sizes. Default:false
.properties::Array
: List of model properties to checkpoint.
Oceananigans.FieldOutput
— Type.FieldOutput([return_type=Array], field)
Returns a FieldOutput
type intended for use with the JLD2OutputWriter
. Calling FieldOutput(model)
returns return_type(field.data.parent)
.
Oceananigans.JLD2OutputWriter
— Type.JLD2OutputWriter{F, I, O, IF, IN, KW} <: AbstractOutputWriter
An output writer for writing to JLD2 files.
Oceananigans.JLD2OutputWriter
— Method.JLD2OutputWriter(model, outputs; interval=nothing, frequency=nothing, dir=".",
prefix="", init=noinit, including=[:grid, :coriolis, :buoyancy, :closure],
part=1, max_filesize=Inf, force=false, async=false, verbose=false)
Construct a JLD2OutputWriter
that writes label, func
pairs in outputs
(which can be a Dict
or NamedTuple
) to a JLD2 file, where label
is a symbol that labels the output and func
is a function of the form func(model)
that returns the data to be saved.
Keyword arguments
frequency::Int
: Save output everyn
model iterations.interval::Int
: Save output everyt
units of model clock time.dir::String
: Directory to save output to. Default: "." (current working directory).prefix::String
: Descriptive filename prefixed to all output files. Default: "".init::Function
: A function of the forminit(file, model)
that runs when a JLD2 output file is initialized. Default:noinit(args...) = nothing
.including::Array
: List of model properties to save with every file. By default, the grid, equation of state, Coriolis parameters, buoyancy parameters, and turbulence closure parameters are saved.part::Int
: The starting part number used ifmax_filesize
is finite. Default: 1.max_filesize::Int
: The writer will stop writing to the output file once the file size exceedsmax_filesize
, and write to a new one with a consistent naming scheme ending inpart1
,part2
, etc. Defaults toInf
.force::Bool
: Remove existing files if their filenames conflict. Default:false
.async::Bool
: Write output asynchronously. Default:false
.verbose::Bool
: Log what the output writer is doing with statistics on compute/write times and file sizes. Default:false
.jld2_kw::Dict
: Dict of kwargs to be passed tojldopen
when data is written.
Oceananigans.NetCDFOutputWriter
— Type.NetCDFOutputWriter <: AbstractOutputWriter
An output writer for writing to NetCDF files.
Oceananigans.FieldOutputs
— Method.FieldOutputs(fields)
Returns a dictionary of FieldOutput
objects with key, value pairs corresponding to each name and value in the NamedTuple
fields
. Intended for use with JLD2OutputWriter
.
Examples
julia> output_writer = JLD2OutputWriter(model, FieldOutputs(model.velocities), frequency=1);
julia> keys(output_writer.outputs)
Base.KeySet for a Dict{Symbol,FieldOutput{UnionAll,F} where F} with 3 entries. Keys:
:w
:v
:u
Oceananigans.restore_from_checkpoint
— Method.restore_from_checkpoint(filepath; kwargs=Dict())
Restore a model from the checkpoint file stored at filepath
. kwargs
can be passed to the Model
constructor, which can be especially useful if you need to manually restore forcing functions or boundary conditions that rely on functions.
Oceananigans.write_grid
— Method.write_grid(model; filename="grid.nc", mode="c",
compression=0, attributes=Dict(), slice_kw...)
Writes a grid.nc file that contains all the dimensions of the domain.
Keyword arguments
- `filename::String` : File name to be saved under
- `mode::String` : Netcdf file is opened in either clobber ("c") or append ("a") mode (Default: "c" )
- `compression::Int` : Defines the compression level of data (0-9, default 0)
- `attributes::Dict` : Attributes (default: Dict())
Time steppers
Oceananigans.time_step!
— Method.time_step!(model, Nt, Δt; init_with_euler=true)
Step forward model
Nt
time steps with step size Δt
.
If init_with_euler
is set to true, then the first step will be taken using a first-order forward Euler method.
Utilities
Oceananigans.pretty_filesize
— Function.pretty_filesize(s, suffix="B")
Convert a floating point value s
representing a file size to a more human-friendly formatted string with one decimal places with a suffix
defaulting to "B". Depending on the value of s
the string will be formatted to show s
using an SI prefix from bytes, kiB (1024 bytes), MiB (1024² bytes), and so on up to YiB (1024⁸ bytes).
Oceananigans.prettytime
— Method.prettytime(t)
Convert a floating point value t
representing an amount of time in seconds to a more human-friendly formatted string with three decimal places. Depending on the value of t
the string will be formatted to show t
in nanoseconds (ns), microseconds (μs), milliseconds (ms), seconds (s), minutes (min), hours (hr), or days (day).
Oceananigans.update_Δt!
— Method.update_Δt!(wizard, model)
Compute wizard.Δt
given the velocities and diffusivities of model
, and the parameters of wizard
.