Coriolis

The Coriolis option determines whether the fluid experiences the effect of the Coriolis force, or rotation. Currently three options are available: no rotation, $f$-plane, and $\beta$-plane.

Coriolis vs. rotation

If you are wondering why this option is called "Coriolis" it is because rotational effects could include the Coriolis and centripetal forces, both of which arise in non-inertial reference frames. But here the model only considers the Coriolis force.

To use no rotation, pass

coriolis = nothing

$f$-plane

To set up an $f$-plane with, for example, Coriolis parameter $f = 10^{-4} \text{s}^{-1}$

coriolis = FPlane(f=1e-4)
FPlane{Float64}: f = 1.00e-04

An $f$-plane can also be specified at some latitude on a spherical planet with a planetary rotation rate. For example, to specify an $f$-plane at a latitude of $\varphi = 45°\text{N}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$

coriolis = FPlane(rotation_rate=7.292115e-5, latitude=45)
FPlane{Float64}: f = 1.03e-04

in which case the value of $f$ is given by $2\Omega\sin\varphi$.

To set up an $f$-plane with non-traditional Coriolis terms, for example, with $\bm{f} = (0, f_y, f_z) = (0, 2, 1) \times 10^{-4} \text{s}^{-1}$,

coriolis = NonTraditionalFPlane(fz=1e-4, fy=2e-4)
Non-Traditional FPlane{Float64}:fz = 1.00e-04, fy = 2.00e-04

An $f$-plane with non-traditional Coriolis terms can also be specified at some latitude on a spherical planet with a planetary rotation rate. For example, to specify an $f$-plane at a latitude of $\varphi = 45°\text{N}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$

coriolis = NonTraditionalFPlane(rotation_rate=7.292115e-5, latitude=45)
Non-Traditional FPlane{Float64}:fz = 1.03e-04, fy = 1.03e-04

in which case $fz = 2\Omega\sin\varphi$ and $fy = 2\Omega\cos\varphi$.

$\beta$-plane

To set up a $\beta$-plane the background rotation rate $f_0$ and the $\beta$ parameter must be specified. For example, a $\beta$-plane with $f_0 = 10^{-4} \text{s}^{-1}$ and $\beta = 1.5 \times 10^{-11} \text{s}^{-1}\text{m}^{-1}$ can be set up with

coriolis = BetaPlane(f₀=1e-4, β=1.5e-11)
BetaPlane{Float64}: f₀ = 1.00e-04, β = 1.50e-11

Alternatively, a $\beta$-plane can also be set up at some latitude on a spherical planet with a planetary rotation rate and planetary radius. For example, to specify a $\beta$-plane at a latitude of $\varphi = 10\degree{S}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$ and a radius of $R = 6,371 \text{km}$

coriolis = BetaPlane(rotation_rate=7.292115e-5, latitude=-10, radius=6371e3)
BetaPlane{Float64}: f₀ = -2.53e-05, β = 2.25e-11

in which case $f_0 = 2\Omega\sin\varphi$ and $\beta = 2\Omega\cos\varphi / R$.