Coriolis
The Coriolis option determines whether the fluid experiences the effect of the Coriolis force, or rotation. Currently three options are available: no rotation, $f$-plane, and $\beta$-plane.
If you are wondering why this option is called "Coriolis" it is because rotational effects could include the Coriolis and centripetal forces, both of which arise in non-inertial reference frames. But here the model only considers the Coriolis force.
To use no rotation, pass
coriolis = nothing
$f$-plane
To set up an $f$-plane with, for example, Coriolis parameter $f = 10^{-4} \text{s}^{-1}$
coriolis = FPlane(f=1e-4)
FPlane{Float64}: f = 1.00e-04
An $f$-plane can also be specified at some latitude on a spherical planet with a planetary rotation rate. For example, to specify an $f$-plane at a latitude of $\varphi = 45°\text{N}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$
coriolis = FPlane(rotation_rate=7.292115e-5, latitude=45)
FPlane{Float64}: f = 1.03e-04
in which case the value of $f$ is given by $2\Omega\sin\varphi$.
To set up an $f$-plane with non-traditional Coriolis terms, for example, with $\bm{f} = (0, f_y, f_z) = (0, 2, 1) \times 10^{-4} \text{s}^{-1}$,
coriolis = NonTraditionalFPlane(fz=1e-4, fy=2e-4)
Non-Traditional FPlane{Float64}:fz = 1.00e-04, fy = 2.00e-04
An $f$-plane with non-traditional Coriolis terms can also be specified at some latitude on a spherical planet with a planetary rotation rate. For example, to specify an $f$-plane at a latitude of $\varphi = 45°\text{N}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$
coriolis = NonTraditionalFPlane(rotation_rate=7.292115e-5, latitude=45)
Non-Traditional FPlane{Float64}:fz = 1.03e-04, fy = 1.03e-04
in which case $fz = 2\Omega\sin\varphi$ and $fy = 2\Omega\cos\varphi$.
$\beta$-plane
To set up a $\beta$-plane the background rotation rate $f_0$ and the $\beta$ parameter must be specified. For example, a $\beta$-plane with $f_0 = 10^{-4} \text{s}^{-1}$ and $\beta = 1.5 \times 10^{-11} \text{s}^{-1}\text{m}^{-1}$ can be set up with
coriolis = BetaPlane(f₀=1e-4, β=1.5e-11)
BetaPlane{Float64}: f₀ = 1.00e-04, β = 1.50e-11
Alternatively, a $\beta$-plane can also be set up at some latitude on a spherical planet with a planetary rotation rate and planetary radius. For example, to specify a $\beta$-plane at a latitude of $\varphi = 10\degree{S}$ on Earth which has a rotation rate of $\Omega = 7.292115 \times 10^{-5} \text{s}^{-1}$ and a radius of $R = 6,371 \text{km}$
coriolis = BetaPlane(rotation_rate=7.292115e-5, latitude=-10, radius=6371e3)
BetaPlane{Float64}: f₀ = -2.53e-05, β = 2.25e-11
in which case $f_0 = 2\Omega\sin\varphi$ and $\beta = 2\Omega\cos\varphi / R$.