Wind- and convection-driven mixing in an ocean surface boundary layer

This example simulates mixing by three-dimensional turbulence in an ocean surface boundary layer driven by atmospheric winds and convection. It demonstrates:

  • How to use the SeawaterBuoyancy model for buoyancy with a linear equation of state.
  • How to use a turbulence closure for large eddy simulation.
  • How to use a function to impose a boundary condition.

We start by importing all of the packages and functions that we'll need for this example.

using Random
using Printf
using Plots
using JLD2

using Oceananigans
using Oceananigans.Utils

using Oceananigans.Grids: nodes
using Oceananigans.Advection: UpwindBiasedFifthOrder
using Oceananigans.Diagnostics: FieldMaximum
using Oceananigans.OutputWriters: JLD2OutputWriter, FieldSlicer, TimeInterval

The grid

We use 32³ grid points with 2 m grid spacing in the horizontal and 1 m spacing in the vertical,

grid = RegularCartesianGrid(size=(32, 32, 32), extent=(64, 64, 32))
RegularCartesianGrid{Float64, Periodic, Periodic, Bounded}
                   domain: x ∈ [0.0, 64.0], y ∈ [0.0, 64.0], z ∈ [-32.0, 0.0]
                 topology: (Periodic, Periodic, Bounded)
  resolution (Nx, Ny, Nz): (32, 32, 32)
   halo size (Hx, Hy, Hz): (1, 1, 1)
grid spacing (Δx, Δy, Δz): (2.0, 2.0, 1.0)

Buoyancy that depends on temperature and salinity

We use the SeawaterBuoyancy model with a linear equation of state,

buoyancy = SeawaterBuoyancy(equation_of_state=LinearEquationOfState(α=2e-4, β=8e-4))
SeawaterBuoyancy{Float64}: g = 9.80665
└── equation of state: LinearEquationOfState{Float64}: α = 2.00e-04, β = 8.00e-04

where $α$ and $β$ are the thermal expansion and haline contraction coefficients for temperature and salinity.

Boundary conditions

We calculate the surface temperature flux associated with surface heating of 200 W m⁻², reference density ρ, and heat capacity cᴾ,

Qʰ = 200  # W m⁻², surface _heat_ flux
ρₒ = 1026 # kg m⁻³, average density at the surface of the world ocean
cᴾ = 3991 # J K⁻¹ s⁻¹, typical heat capacity for seawater

Qᵀ = Qʰ / (ρₒ * cᴾ) # K m⁻¹ s⁻¹, surface _temperature_ flux
4.884283985946938e-5

Finally, we impose a temperature gradient dTdz both initially and at the bottom of the domain, culminating in the boundary conditions on temperature,

dTdz = 0.01 # K m⁻¹

T_bcs = TracerBoundaryConditions(grid,
                                 top = BoundaryCondition(Flux, Qᵀ),
                                 bottom = BoundaryCondition(Gradient, dTdz))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions
├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
└── z: CoordinateBoundaryConditions{BoundaryCondition{Gradient,Float64},BoundaryCondition{Flux,Float64}}

Note that a positive temperature flux at the surface of the ocean implies cooling. This is because a positive temperature flux implies that temperature is fluxed upwards, out of the ocean.

For the velocity field, we imagine a wind blowing over the ocean surface with an average velocity at 10 meters u₁₀, and use a drag coefficient cᴰ to estimate the kinematic stress (that is, stress divided by density) exerted by the wind on the ocean:

u₁₀ = 10     # m s⁻¹, average wind velocity 10 meters above the ocean
cᴰ = 2.5e-3  # dimensionless drag coefficient
ρₐ = 1.225   # kg m⁻³, average density of air at sea-level

Qᵘ = - ρₐ / ρₒ * cᴰ * u₁₀ * abs(u₁₀) # m² s⁻²
-0.0002984892787524367

The boundary conditions on u are thus

u_bcs = UVelocityBoundaryConditions(grid, top = BoundaryCondition(Flux, Qᵘ))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions
├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
└── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Float64}}

For salinity, S, we impose an evaporative flux of the form

@inline Qˢ(x, y, t, S, evaporation_rate) = - evaporation_rate * S

where S is salinity. We use an evporation rate of 1 millimeter per hour,

evaporation_rate = 1e-3 / hour
2.7777777777777776e-7

We build the Flux evaporation BoundaryCondition with the function , indicating that depends on salinity S and passing the parameter evaporation_rate,

evaporation_bc = BoundaryCondition(Flux, Qˢ, field_dependencies=:S, parameters=evaporation_rate)
BoundaryCondition: type=Flux, condition=Qˢ(x, y, t, S, evaporation_rate) in Main.ex-ocean_wind_mixing_and_convection at none:1

The full salinity boundary conditions are

S_bcs = TracerBoundaryConditions(grid, top=evaporation_bc)
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions
├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}}
└── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Oceananigans.BoundaryConditions.ContinuousBoundaryFunction{Nothing,Nothing,Nothing,Nothing,typeof(Main.ex-ocean_wind_mixing_and_convection.Qˢ),Float64,Tuple{Symbol},Nothing,Nothing}}}

Model instantiation

We fill in the final details of the model here: upwind-biased 5th-order advection for momentum and tracers, 3rd-order Runge-Kutta time-stepping, Coriolis forces, and the AnisotropicMinimumDissipation closure for large eddy simulation to model the effect of turbulent motions at scales smaller than the grid scale that we cannot explicitly resolve.

model = IncompressibleModel(architecture = CPU(),
                            advection = UpwindBiasedFifthOrder(),
                            timestepper = :RungeKutta3,
                            grid = grid,
                            coriolis = FPlane(f=1e-4),
                            buoyancy = buoyancy,
                            closure = AnisotropicMinimumDissipation(),
                            boundary_conditions = (u=u_bcs, T=T_bcs, S=S_bcs))
IncompressibleModel{CPU, Float64}(time = 0 seconds, iteration = 0) 
├── grid: RegularCartesianGrid{Float64, Periodic, Periodic, Bounded}(Nx=32, Ny=32, Nz=32)
├── tracers: (:T, :S)
├── closure: VerstappenAnisotropicMinimumDissipation{Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}},Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}}}
├── buoyancy: SeawaterBuoyancy{Float64,LinearEquationOfState{Float64},Nothing,Nothing}
└── coriolis: FPlane{Float64}

Notes:

  • To use the Smagorinsky-Lilly turbulence closure (with a constant model coefficient) rather than AnisotropicMinimumDissipation, use closure = ConstantSmagorinsky() in the model constructor.

  • To change the architecture to GPU, replace architecture = CPU() with architecture = GPU()`

Initial conditions

Our initial condition for temperature consists of a linear stratification superposed with random noise damped at the walls, while our initial condition for velocity consists only of random noise.

# Random noise damped at top and bottom
Ξ(z) = randn() * z / model.grid.Lz * (1 + z / model.grid.Lz) # noise

# Temperature initial condition: a stable density gradient with random noise superposed.
Tᵢ(x, y, z) = 20 + dTdz * z + dTdz * model.grid.Lz * 1e-6 * Ξ(z)

# Velocity initial condition: random noise scaled by the friction velocity.
uᵢ(x, y, z) = sqrt(abs(Qᵘ)) * 1e-3 * Ξ(z)

# `set!` the `model` fields using functions or constants:
set!(model, u=uᵢ, w=uᵢ, T=Tᵢ, S=35)

Setting up a simulation

We first build a TimeStepWizard to ensure stable time-stepping with a Courant-Freidrichs-Lewy (CFL) number of 1.0.

wizard = TimeStepWizard(cfl=1.0, Δt=10.0, max_change=1.1, max_Δt=1minute)
TimeStepWizard{Float64}(1.0, Inf, 1.1, 0.5, 60.0, 10.0)

Nice progress messaging is helpful:

wmax = FieldMaximum(abs, model.velocities.w)

start_time = time_ns() # so we can print the total elapsed wall time

# Print a progress message
progress_message(sim) =
    @printf("i: %04d, t: %s, Δt: %s, wmax = %.1e ms⁻¹, wall time: %s\n",
            sim.model.clock.iteration, prettytime(model.clock.time),
            prettytime(wizard.Δt), wmax(sim.model),
            prettytime((time_ns() - start_time) * 1e-9))
progress_message (generic function with 1 method)

We then set up the simulation:

simulation = Simulation(model, Δt=wizard, stop_time=40minutes, iteration_interval=10,
                        progress=progress_message)
Simulation{IncompressibleModel{CPU, Float64}}
├── Model clock: time = 0 seconds, iteration = 0 
├── Next time step (TimeStepWizard{Float64}): 10 seconds 
├── Iteration interval: 10
├── Stop criteria: Any[Oceananigans.Simulations.iteration_limit_exceeded, Oceananigans.Simulations.stop_time_exceeded, Oceananigans.Simulations.wall_time_limit_exceeded]
├── Run time: 0 seconds, wall time limit: Inf
├── Stop time: 40 minutes, stop iteration: Inf
├── Diagnostics: OrderedCollections.OrderedDict with no entries
└── Output writers: OrderedCollections.OrderedDict with no entries

Output

We use the JLD2OutputWriter to save $x, z$ slices of the velocity fields, tracer fields, and eddy diffusivities. The prefix keyword argument to JLD2OutputWriter indicates that output will be saved in ocean_wind_mixing_and_convection.jld2.

# Create a NamedTuple with eddy viscosity
eddy_viscosity = (νₑ = model.diffusivities.νₑ,)

simulation.output_writers[:slices] =
    JLD2OutputWriter(model, merge(model.velocities, model.tracers, eddy_viscosity),
                           prefix = "ocean_wind_mixing_and_convection",
                     field_slicer = FieldSlicer(j=Int(grid.Ny/2)),
                         schedule = TimeInterval(1minute),
                            force = true)
JLD2OutputWriter scheduled on TimeInterval(1 minute):
├── filepath: ./ocean_wind_mixing_and_convection.jld2
├── 6 outputs: (:u, :v, :w, :T, :S, :νₑ)
├── field slicer: FieldSlicer(:, 16, :, with_halos=false)
├── array type: Array{Float32}
├── including: [:grid, :coriolis, :buoyancy, :closure]
└── max filesize: Inf YiB

We're ready:

run!(simulation)
i: 0010, t: 1.667 minutes, Δt: 10 seconds, wmax = 4.4e-04 ms⁻¹, wall time: 23.613 seconds
i: 0020, t: 3.500 minutes, Δt: 11 seconds, wmax = 8.7e-04 ms⁻¹, wall time: 24.543 seconds
i: 0030, t: 5.517 minutes, Δt: 12.100 seconds, wmax = 1.2e-03 ms⁻¹, wall time: 25.464 seconds
i: 0040, t: 7.735 minutes, Δt: 13.310 seconds, wmax = 1.3e-03 ms⁻¹, wall time: 26.386 seconds
i: 0050, t: 10.138 minutes, Δt: 14.419 seconds, wmax = 1.3e-03 ms⁻¹, wall time: 27.313 seconds
i: 0060, t: 11.968 minutes, Δt: 10.982 seconds, wmax = 1.5e-03 ms⁻¹, wall time: 28.241 seconds
i: 0070, t: 13.513 minutes, Δt: 9.268 seconds, wmax = 3.4e-03 ms⁻¹, wall time: 29.408 seconds
i: 0080, t: 14.865 minutes, Δt: 8.111 seconds, wmax = 9.1e-03 ms⁻¹, wall time: 30.329 seconds
i: 0090, t: 16.042 minutes, Δt: 7.064 seconds, wmax = 1.8e-02 ms⁻¹, wall time: 31.354 seconds
i: 0100, t: 17.095 minutes, Δt: 6.317 seconds, wmax = 3.7e-02 ms⁻¹, wall time: 32.277 seconds
i: 0110, t: 18.045 minutes, Δt: 5.698 seconds, wmax = 5.2e-02 ms⁻¹, wall time: 33.190 seconds
i: 0120, t: 19.002 minutes, Δt: 5.741 seconds, wmax = 5.1e-02 ms⁻¹, wall time: 34.106 seconds
i: 0130, t: 20.014 minutes, Δt: 6.076 seconds, wmax = 6.0e-02 ms⁻¹, wall time: 35.022 seconds
i: 0140, t: 21.050 minutes, Δt: 6.218 seconds, wmax = 7.0e-02 ms⁻¹, wall time: 36.075 seconds
i: 0150, t: 22.170 minutes, Δt: 6.715 seconds, wmax = 6.4e-02 ms⁻¹, wall time: 37.103 seconds
i: 0160, t: 23.354 minutes, Δt: 7.107 seconds, wmax = 6.0e-02 ms⁻¹, wall time: 38.009 seconds
i: 0170, t: 24.551 minutes, Δt: 7.183 seconds, wmax = 7.1e-02 ms⁻¹, wall time: 38.916 seconds
i: 0180, t: 25.844 minutes, Δt: 7.754 seconds, wmax = 8.1e-02 ms⁻¹, wall time: 39.830 seconds
i: 0190, t: 27.158 minutes, Δt: 7.889 seconds, wmax = 8.2e-02 ms⁻¹, wall time: 40.751 seconds
i: 0200, t: 28.428 minutes, Δt: 7.615 seconds, wmax = 6.9e-02 ms⁻¹, wall time: 41.685 seconds
i: 0210, t: 29.725 minutes, Δt: 7.785 seconds, wmax = 5.7e-02 ms⁻¹, wall time: 42.777 seconds
i: 0220, t: 31.033 minutes, Δt: 7.848 seconds, wmax = 5.9e-02 ms⁻¹, wall time: 43.685 seconds
i: 0230, t: 32.248 minutes, Δt: 7.286 seconds, wmax = 5.4e-02 ms⁻¹, wall time: 44.626 seconds
i: 0240, t: 33.534 minutes, Δt: 7.716 seconds, wmax = 4.8e-02 ms⁻¹, wall time: 45.538 seconds
i: 0250, t: 34.792 minutes, Δt: 7.551 seconds, wmax = 4.7e-02 ms⁻¹, wall time: 46.443 seconds
i: 0260, t: 35.976 minutes, Δt: 7.103 seconds, wmax = 4.9e-02 ms⁻¹, wall time: 47.349 seconds
i: 0270, t: 37.127 minutes, Δt: 6.907 seconds, wmax = 4.5e-02 ms⁻¹, wall time: 48.253 seconds
i: 0280, t: 38.297 minutes, Δt: 7.020 seconds, wmax = 4.8e-02 ms⁻¹, wall time: 49.256 seconds
i: 0290, t: 39.457 minutes, Δt: 6.959 seconds, wmax = 4.4e-02 ms⁻¹, wall time: 50.201 seconds
i: 0300, t: 40.586 minutes, Δt: 6.773 seconds, wmax = 4.1e-02 ms⁻¹, wall time: 51.124 seconds
[ Info: Simulation is stopping. Model time 40.586 minutes has hit or exceeded simulation stop time 40 minutes.

Turbulence visualization

We animate the data saved in ocean_wind_mixing_and_convection.jld2. We prepare for animating the flow by creating coordinate arrays, opening the file, building a vector of the iterations that we saved data at, and defining functions for computing colorbar limits:

# Coordinate arrays
xw, yw, zw = nodes(model.velocities.w)
xT, yT, zT = nodes(model.tracers.T)

# Open the file with our data
file = jldopen(simulation.output_writers[:slices].filepath)

# Extract a vector of iterations
iterations = parse.(Int, keys(file["timeseries/t"]))

""" Returns colorbar levels equispaced between `(-clim, clim)` and encompassing the extrema of `c`. """
function divergent_levels(c, clim, nlevels=21)
    cmax = maximum(abs, c)
    levels = clim > cmax ? range(-clim, stop=clim, length=nlevels) : range(-cmax, stop=cmax, length=nlevels)
    return (levels[1], levels[end]), levels
end

""" Returns colorbar levels equispaced between `clims` and encompassing the extrema of `c`."""
function sequential_levels(c, clims, nlevels=20)
    levels = range(clims[1], stop=clims[2], length=nlevels)
    cmin, cmax = minimum(c), maximum(c)
    cmin < clims[1] && (levels = vcat([cmin], levels))
    cmax > clims[2] && (levels = vcat(levels, [cmax]))
    return clims, levels
end
Main.ex-ocean_wind_mixing_and_convection.sequential_levels

We start the animation at t = 10minutes since things are pretty boring till then:

times = [file["timeseries/t/$iter"] for iter in iterations]
intro = searchsortedfirst(times, 10minutes)

anim = @animate for (i, iter) in enumerate(iterations[intro:end])

    @info "Drawing frame $i from iteration $iter..."

    t = file["timeseries/t/$iter"]
    w = file["timeseries/w/$iter"][:, 1, :]
    T = file["timeseries/T/$iter"][:, 1, :]
    S = file["timeseries/S/$iter"][:, 1, :]
    νₑ = file["timeseries/νₑ/$iter"][:, 1, :]

    wlims, wlevels = divergent_levels(w, 2e-2)
    Tlims, Tlevels = sequential_levels(T, (19.7, 19.99))
    Slims, Slevels = sequential_levels(S, (35, 35.005))
    νlims, νlevels = sequential_levels(νₑ, (1e-6, 5e-3))

    kwargs = (linewidth=0, xlabel="x (m)", ylabel="z (m)", aspectratio=1,
              xlims=(0, grid.Lx), ylims=(-grid.Lz, 0))

    w_plot = contourf(xw, zw, w'; color=:balance, clims=wlims, levels=wlevels, kwargs...)
    T_plot = contourf(xT, zT, T'; color=:thermal, clims=Tlims, levels=Tlevels, kwargs...)
    S_plot = contourf(xT, zT, S'; color=:haline,  clims=Slims, levels=Slevels, kwargs...)

    # We use a heatmap for the eddy viscosity to observe how it varies on the grid scale.
    ν_plot = heatmap(xT, zT, νₑ'; color=:thermal, clims=νlims, levels=νlevels, kwargs...)

    w_title = @sprintf("vertical velocity (m s⁻¹), t = %s", prettytime(t))
    T_title = "temperature (ᵒC)"
    S_title = "salinity (g kg⁻¹)"
    ν_title = "eddy viscosity (m² s⁻¹)"

    # Arrange the plots side-by-side.
    plot(w_plot, T_plot, S_plot, ν_plot, layout=(2, 2), size=(1200, 600),
         title=[w_title T_title S_title ν_title])

    iter == iterations[end] && close(file)
end

This page was generated using Literate.jl.