Wind- and convection-driven mixing in an ocean surface boundary layer
This example simulates mixing by three-dimensional turbulence in an ocean surface boundary layer driven by atmospheric winds and convection. It demonstrates:
- How to use the
SeawaterBuoyancy
model for buoyancy with a linear equation of state. - How to use a turbulence closure for large eddy simulation.
- How to use a function to impose a boundary condition.
Install dependencies
First let's make sure we have all required packages installed.
using Pkg
pkg"add Oceananigans, JLD2, Plots"
We start by importing all of the packages and functions that we'll need for this example.
using Random
using Printf
using Plots
using JLD2
using Oceananigans
using Oceananigans.Utils
using Oceananigans.Grids: nodes
using Oceananigans.Advection: UpwindBiasedFifthOrder
using Oceananigans.Diagnostics: FieldMaximum
using Oceananigans.OutputWriters: JLD2OutputWriter, FieldSlicer, TimeInterval
The grid
We use 32³ grid points with 2 m grid spacing in the horizontal and 1 m spacing in the vertical,
grid = RegularCartesianGrid(size=(32, 32, 32), extent=(64, 64, 32))
RegularCartesianGrid{Float64, Periodic, Periodic, Bounded} domain: x ∈ [0.0, 64.0], y ∈ [0.0, 64.0], z ∈ [-32.0, 0.0] topology: (Periodic, Periodic, Bounded) resolution (Nx, Ny, Nz): (32, 32, 32) halo size (Hx, Hy, Hz): (1, 1, 1) grid spacing (Δx, Δy, Δz): (2.0, 2.0, 1.0)
Buoyancy that depends on temperature and salinity
We use the SeawaterBuoyancy
model with a linear equation of state,
buoyancy = SeawaterBuoyancy(equation_of_state=LinearEquationOfState(α=2e-4, β=8e-4))
SeawaterBuoyancy{Float64}: g = 9.80665 └── equation of state: LinearEquationOfState{Float64}: α = 2.00e-04, β = 8.00e-04
where $α$ and $β$ are the thermal expansion and haline contraction coefficients for temperature and salinity.
Boundary conditions
We calculate the surface temperature flux associated with surface heating of 200 W m⁻², reference density ρ
, and heat capacity cᴾ
,
Qʰ = 200 # W m⁻², surface _heat_ flux
ρₒ = 1026 # kg m⁻³, average density at the surface of the world ocean
cᴾ = 3991 # J K⁻¹ s⁻¹, typical heat capacity for seawater
Qᵀ = Qʰ / (ρₒ * cᴾ) # K m⁻¹ s⁻¹, surface _temperature_ flux
4.884283985946938e-5
Finally, we impose a temperature gradient dTdz
both initially and at the bottom of the domain, culminating in the boundary conditions on temperature,
dTdz = 0.01 # K m⁻¹
T_bcs = TracerBoundaryConditions(grid,
top = BoundaryCondition(Flux, Qᵀ),
bottom = BoundaryCondition(Gradient, dTdz))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Gradient,Float64},BoundaryCondition{Flux,Float64}}
Note that a positive temperature flux at the surface of the ocean implies cooling. This is because a positive temperature flux implies that temperature is fluxed upwards, out of the ocean.
For the velocity field, we imagine a wind blowing over the ocean surface with an average velocity at 10 meters u₁₀
, and use a drag coefficient cᴰ
to estimate the kinematic stress (that is, stress divided by density) exerted by the wind on the ocean:
u₁₀ = 10 # m s⁻¹, average wind velocity 10 meters above the ocean
cᴰ = 2.5e-3 # dimensionless drag coefficient
ρₐ = 1.225 # kg m⁻³, average density of air at sea-level
Qᵘ = - ρₐ / ρₒ * cᴰ * u₁₀ * abs(u₁₀) # m² s⁻²
-0.0002984892787524367
The boundary conditions on u
are thus
u_bcs = UVelocityBoundaryConditions(grid, top = BoundaryCondition(Flux, Qᵘ))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Float64}}
For salinity, S
, we impose an evaporative flux of the form
@inline Qˢ(x, y, t, S, evaporation_rate) = - evaporation_rate * S
where S
is salinity. We use an evporation rate of 1 millimeter per hour,
evaporation_rate = 1e-3 / hour
2.7777777777777776e-7
We build the Flux
evaporation BoundaryCondition
with the function Qˢ
, indicating that Qˢ
depends on salinity S
and passing the parameter evaporation_rate
,
evaporation_bc = BoundaryCondition(Flux, Qˢ, field_dependencies=:S, parameters=evaporation_rate)
BoundaryCondition: type=Flux, condition=Qˢ(x, y, t, S, evaporation_rate) in Main.ex-ocean_wind_mixing_and_convection at none:1
The full salinity boundary conditions are
S_bcs = TracerBoundaryConditions(grid, top=evaporation_bc)
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Oceananigans.BoundaryConditions.ContinuousBoundaryFunction{Nothing,Nothing,Nothing,Nothing,typeof(Main.ex-ocean_wind_mixing_and_convection.Qˢ),Float64,Tuple{Symbol},Nothing,Nothing}}}
Model instantiation
We fill in the final details of the model here: upwind-biased 5th-order advection for momentum and tracers, 3rd-order Runge-Kutta time-stepping, Coriolis forces, and the AnisotropicMinimumDissipation
closure for large eddy simulation to model the effect of turbulent motions at scales smaller than the grid scale that we cannot explicitly resolve.
model = IncompressibleModel(architecture = CPU(),
advection = UpwindBiasedFifthOrder(),
timestepper = :RungeKutta3,
grid = grid,
coriolis = FPlane(f=1e-4),
buoyancy = buoyancy,
closure = AnisotropicMinimumDissipation(),
boundary_conditions = (u=u_bcs, T=T_bcs, S=S_bcs))
IncompressibleModel{CPU, Float64}(time = 0 seconds, iteration = 0) ├── grid: RegularCartesianGrid{Float64, Periodic, Periodic, Bounded}(Nx=32, Ny=32, Nz=32) ├── tracers: (:T, :S) ├── closure: VerstappenAnisotropicMinimumDissipation{Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}},Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}}} ├── buoyancy: SeawaterBuoyancy{Float64,LinearEquationOfState{Float64},Nothing,Nothing} └── coriolis: FPlane{Float64}
Notes:
To use the Smagorinsky-Lilly turbulence closure (with a constant model coefficient) rather than
AnisotropicMinimumDissipation
, useclosure = ConstantSmagorinsky()
in the model constructor.To change the
architecture
toGPU
, replacearchitecture = CPU()
witharchitecture = GPU()
`
Initial conditions
Our initial condition for temperature consists of a linear stratification superposed with random noise damped at the walls, while our initial condition for velocity consists only of random noise.
# Random noise damped at top and bottom
Ξ(z) = randn() * z / model.grid.Lz * (1 + z / model.grid.Lz) # noise
# Temperature initial condition: a stable density gradient with random noise superposed.
Tᵢ(x, y, z) = 20 + dTdz * z + dTdz * model.grid.Lz * 1e-6 * Ξ(z)
# Velocity initial condition: random noise scaled by the friction velocity.
uᵢ(x, y, z) = sqrt(abs(Qᵘ)) * 1e-3 * Ξ(z)
# `set!` the `model` fields using functions or constants:
set!(model, u=uᵢ, w=uᵢ, T=Tᵢ, S=35)
Setting up a simulation
We first build a TimeStepWizard
to ensure stable time-stepping with a Courant-Freidrichs-Lewy (CFL) number of 1.0.
wizard = TimeStepWizard(cfl=1.0, Δt=10.0, max_change=1.1, max_Δt=1minute)
TimeStepWizard{Float64}(1.0, Inf, 1.1, 0.5, 60.0, 0.0, 10.0)
Nice progress messaging is helpful:
wmax = FieldMaximum(abs, model.velocities.w)
start_time = time_ns() # so we can print the total elapsed wall time
# Print a progress message
progress_message(sim) =
@printf("i: %04d, t: %s, Δt: %s, wmax = %.1e ms⁻¹, wall time: %s\n",
sim.model.clock.iteration, prettytime(model.clock.time),
prettytime(wizard.Δt), wmax(sim.model),
prettytime((time_ns() - start_time) * 1e-9))
progress_message (generic function with 1 method)
We then set up the simulation:
simulation = Simulation(model, Δt=wizard, stop_time=40minutes, iteration_interval=10,
progress=progress_message)
Simulation{IncompressibleModel{CPU, Float64}} ├── Model clock: time = 0 seconds, iteration = 0 ├── Next time step (TimeStepWizard{Float64}): 10 seconds ├── Iteration interval: 10 ├── Stop criteria: Any[Oceananigans.Simulations.iteration_limit_exceeded, Oceananigans.Simulations.stop_time_exceeded, Oceananigans.Simulations.wall_time_limit_exceeded] ├── Run time: 0 seconds, wall time limit: Inf ├── Stop time: 40 minutes, stop iteration: Inf ├── Diagnostics: OrderedCollections.OrderedDict with 1 entry: │ └── nan_checker => NaNChecker └── Output writers: OrderedCollections.OrderedDict with no entries
Output
We use the JLD2OutputWriter
to save $x, z$ slices of the velocity fields, tracer fields, and eddy diffusivities. The prefix
keyword argument to JLD2OutputWriter
indicates that output will be saved in ocean_wind_mixing_and_convection.jld2
.
# Create a NamedTuple with eddy viscosity
eddy_viscosity = (νₑ = model.diffusivities.νₑ,)
simulation.output_writers[:slices] =
JLD2OutputWriter(model, merge(model.velocities, model.tracers, eddy_viscosity),
prefix = "ocean_wind_mixing_and_convection",
field_slicer = FieldSlicer(j=Int(grid.Ny/2)),
schedule = TimeInterval(1minute),
force = true)
JLD2OutputWriter scheduled on TimeInterval(1 minute): ├── filepath: ./ocean_wind_mixing_and_convection.jld2 ├── 6 outputs: (:u, :v, :w, :T, :S, :νₑ) ├── field slicer: FieldSlicer(:, 16, :, with_halos=false) ├── array type: Array{Float32} ├── including: [:grid, :coriolis, :buoyancy, :closure] └── max filesize: Inf YiB
We're ready:
run!(simulation)
i: 0010, t: 1.667 minutes, Δt: 10 seconds, wmax = 9.0e-06 ms⁻¹, wall time: 15.783 seconds i: 0020, t: 3 minutes, Δt: 11 seconds, wmax = 8.1e-06 ms⁻¹, wall time: 16.677 seconds i: 0030, t: 5 minutes, Δt: 12.100 seconds, wmax = 6.1e-06 ms⁻¹, wall time: 17.551 seconds i: 0040, t: 7 minutes, Δt: 13.310 seconds, wmax = 5.6e-06 ms⁻¹, wall time: 18.435 seconds i: 0050, t: 9 minutes, Δt: 14.641 seconds, wmax = 7.4e-06 ms⁻¹, wall time: 19.318 seconds i: 0060, t: 11 minutes, Δt: 12.417 seconds, wmax = 8.6e-06 ms⁻¹, wall time: 20.276 seconds i: 0070, t: 12.677 minutes, Δt: 10.162 seconds, wmax = 2.4e-05 ms⁻¹, wall time: 21.125 seconds i: 0080, t: 14 minutes, Δt: 8.819 seconds, wmax = 7.4e-05 ms⁻¹, wall time: 22.001 seconds i: 0090, t: 15.266 minutes, Δt: 7.983 seconds, wmax = 2.1e-04 ms⁻¹, wall time: 22.847 seconds i: 0100, t: 16.366 minutes, Δt: 7.314 seconds, wmax = 6.6e-04 ms⁻¹, wall time: 23.696 seconds i: 0110, t: 17.454 minutes, Δt: 6.806 seconds, wmax = 2.0e-03 ms⁻¹, wall time: 24.544 seconds i: 0120, t: 18.422 minutes, Δt: 6.330 seconds, wmax = 5.7e-03 ms⁻¹, wall time: 25.404 seconds i: 0130, t: 19.393 minutes, Δt: 5.900 seconds, wmax = 1.5e-02 ms⁻¹, wall time: 26.346 seconds i: 0140, t: 20.272 minutes, Δt: 5.437 seconds, wmax = 3.0e-02 ms⁻¹, wall time: 27.196 seconds i: 0150, t: 21.085 minutes, Δt: 5.095 seconds, wmax = 4.3e-02 ms⁻¹, wall time: 28.053 seconds i: 0160, t: 21.856 minutes, Δt: 4.629 seconds, wmax = 5.7e-02 ms⁻¹, wall time: 28.878 seconds i: 0170, t: 22.608 minutes, Δt: 4.561 seconds, wmax = 5.6e-02 ms⁻¹, wall time: 29.737 seconds i: 0180, t: 23.418 minutes, Δt: 5.017 seconds, wmax = 5.9e-02 ms⁻¹, wall time: 30.605 seconds i: 0190, t: 24.256 minutes, Δt: 5.126 seconds, wmax = 6.3e-02 ms⁻¹, wall time: 31.474 seconds i: 0200, t: 25.188 minutes, Δt: 5.639 seconds, wmax = 8.1e-02 ms⁻¹, wall time: 32.340 seconds i: 0210, t: 26.207 minutes, Δt: 6.203 seconds, wmax = 7.6e-02 ms⁻¹, wall time: 33.283 seconds i: 0220, t: 27.341 minutes, Δt: 6.823 seconds, wmax = 8.0e-02 ms⁻¹, wall time: 34.149 seconds i: 0230, t: 28.458 minutes, Δt: 6.870 seconds, wmax = 7.0e-02 ms⁻¹, wall time: 35.023 seconds i: 0240, t: 29.427 minutes, Δt: 6.407 seconds, wmax = 7.1e-02 ms⁻¹, wall time: 35.887 seconds i: 0250, t: 30.587 minutes, Δt: 7.047 seconds, wmax = 6.8e-02 ms⁻¹, wall time: 36.760 seconds i: 0260, t: 31.721 minutes, Δt: 7.212 seconds, wmax = 6.5e-02 ms⁻¹, wall time: 37.628 seconds i: 0270, t: 32.851 minutes, Δt: 7.298 seconds, wmax = 5.9e-02 ms⁻¹, wall time: 38.507 seconds i: 0280, t: 33.977 minutes, Δt: 7.324 seconds, wmax = 5.4e-02 ms⁻¹, wall time: 39.464 seconds i: 0290, t: 35 minutes, Δt: 7.272 seconds, wmax = 5.6e-02 ms⁻¹, wall time: 40.374 seconds i: 0300, t: 36.116 minutes, Δt: 6.977 seconds, wmax = 5.8e-02 ms⁻¹, wall time: 41.249 seconds i: 0310, t: 37.240 minutes, Δt: 7.188 seconds, wmax = 5.0e-02 ms⁻¹, wall time: 42.127 seconds i: 0320, t: 38.360 minutes, Δt: 7.203 seconds, wmax = 5.4e-02 ms⁻¹, wall time: 43.002 seconds i: 0330, t: 39.472 minutes, Δt: 7.084 seconds, wmax = 5.9e-02 ms⁻¹, wall time: 43.895 seconds i: 0335, t: 40 minutes, Δt: 7.205 seconds, wmax = 6.0e-02 ms⁻¹, wall time: 44.365 seconds [ Info: Simulation is stopping. Model time 40 minutes has hit or exceeded simulation stop time 40 minutes.
Turbulence visualization
We animate the data saved in ocean_wind_mixing_and_convection.jld2
. We prepare for animating the flow by creating coordinate arrays, opening the file, building a vector of the iterations that we saved data at, and defining functions for computing colorbar limits:
# Coordinate arrays
xw, yw, zw = nodes(model.velocities.w)
xT, yT, zT = nodes(model.tracers.T)
# Open the file with our data
file = jldopen(simulation.output_writers[:slices].filepath)
# Extract a vector of iterations
iterations = parse.(Int, keys(file["timeseries/t"]))
""" Returns colorbar levels equispaced between `(-clim, clim)` and encompassing the extrema of `c`. """
function divergent_levels(c, clim, nlevels=21)
cmax = maximum(abs, c)
levels = clim > cmax ? range(-clim, stop=clim, length=nlevels) : range(-cmax, stop=cmax, length=nlevels)
return (levels[1], levels[end]), levels
end
""" Returns colorbar levels equispaced between `clims` and encompassing the extrema of `c`."""
function sequential_levels(c, clims, nlevels=20)
levels = range(clims[1], stop=clims[2], length=nlevels)
cmin, cmax = minimum(c), maximum(c)
cmin < clims[1] && (levels = vcat([cmin], levels))
cmax > clims[2] && (levels = vcat(levels, [cmax]))
return clims, levels
end
Main.ex-ocean_wind_mixing_and_convection.sequential_levels
We start the animation at t = 10minutes
since things are pretty boring till then:
times = [file["timeseries/t/$iter"] for iter in iterations]
intro = searchsortedfirst(times, 10minutes)
anim = @animate for (i, iter) in enumerate(iterations[intro:end])
@info "Drawing frame $i from iteration $iter..."
t = file["timeseries/t/$iter"]
w = file["timeseries/w/$iter"][:, 1, :]
T = file["timeseries/T/$iter"][:, 1, :]
S = file["timeseries/S/$iter"][:, 1, :]
νₑ = file["timeseries/νₑ/$iter"][:, 1, :]
wlims, wlevels = divergent_levels(w, 2e-2)
Tlims, Tlevels = sequential_levels(T, (19.7, 19.99))
Slims, Slevels = sequential_levels(S, (35, 35.005))
νlims, νlevels = sequential_levels(νₑ, (1e-6, 5e-3))
kwargs = (linewidth=0, xlabel="x (m)", ylabel="z (m)", aspectratio=1,
xlims=(0, grid.Lx), ylims=(-grid.Lz, 0))
w_plot = contourf(xw, zw, w'; color=:balance, clims=wlims, levels=wlevels, kwargs...)
T_plot = contourf(xT, zT, T'; color=:thermal, clims=Tlims, levels=Tlevels, kwargs...)
S_plot = contourf(xT, zT, S'; color=:haline, clims=Slims, levels=Slevels, kwargs...)
# We use a heatmap for the eddy viscosity to observe how it varies on the grid scale.
ν_plot = heatmap(xT, zT, νₑ'; color=:thermal, clims=νlims, levels=νlevels, kwargs...)
w_title = @sprintf("vertical velocity (m s⁻¹), t = %s", prettytime(t))
T_title = "temperature (ᵒC)"
S_title = "salinity (g kg⁻¹)"
ν_title = "eddy viscosity (m² s⁻¹)"
# Arrange the plots side-by-side.
plot(w_plot, T_plot, S_plot, ν_plot, layout=(2, 2), size=(1200, 600),
title=[w_title T_title S_title ν_title])
iter == iterations[end] && close(file)
end
This page was generated using Literate.jl.