Wind- and convection-driven mixing in an ocean surface boundary layer
This example simulates mixing by three-dimensional turbulence in an ocean surface boundary layer driven by atmospheric winds and convection. It demonstrates:
- How to use the
SeawaterBuoyancy
model for buoyancy with a linear equation of state. - How to use a turbulence closure for large eddy simulation.
- How to use a function to impose a boundary condition.
Install dependencies
First let's make sure we have all required packages installed.
using Pkg
pkg"add Oceananigans, JLD2, Plots"
We start by importing all of the packages and functions that we'll need for this example.
using Random
using Printf
using Plots
using JLD2
using Oceananigans
using Oceananigans.Units: minute, minutes, hour
The grid
We use 32³ grid points with 2 m grid spacing in the horizontal and 1 m spacing in the vertical,
grid = RegularRectilinearGrid(size=(32, 32, 32), extent=(64, 64, 32))
RegularRectilinearGrid{Float64, Periodic, Periodic, Bounded} domain: x ∈ [0.0, 64.0], y ∈ [0.0, 64.0], z ∈ [-32.0, 0.0] topology: (Periodic, Periodic, Bounded) resolution (Nx, Ny, Nz): (32, 32, 32) halo size (Hx, Hy, Hz): (1, 1, 1) grid spacing (Δx, Δy, Δz): (2.0, 2.0, 1.0)
Buoyancy that depends on temperature and salinity
We use the SeawaterBuoyancy
model with a linear equation of state,
buoyancy = SeawaterBuoyancy(equation_of_state=LinearEquationOfState(α=2e-4, β=8e-4))
SeawaterBuoyancy{Float64}: g = 9.80665 └── equation of state: LinearEquationOfState{Float64}: α = 2.00e-04, β = 8.00e-04
where $α$ and $β$ are the thermal expansion and haline contraction coefficients for temperature and salinity.
Boundary conditions
We calculate the surface temperature flux associated with surface heating of 200 W m⁻², reference density ρ
, and heat capacity cᴾ
,
Qʰ = 200 # W m⁻², surface _heat_ flux
ρₒ = 1026 # kg m⁻³, average density at the surface of the world ocean
cᴾ = 3991 # J K⁻¹ s⁻¹, typical heat capacity for seawater
Qᵀ = Qʰ / (ρₒ * cᴾ) # K m⁻¹ s⁻¹, surface _temperature_ flux
4.884283985946938e-5
Finally, we impose a temperature gradient dTdz
both initially and at the bottom of the domain, culminating in the boundary conditions on temperature,
dTdz = 0.01 # K m⁻¹
T_bcs = TracerBoundaryConditions(grid,
top = FluxBoundaryCondition(Qᵀ),
bottom = GradientBoundaryCondition(dTdz))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Gradient,Float64},BoundaryCondition{Flux,Float64}}
Note that a positive temperature flux at the surface of the ocean implies cooling. This is because a positive temperature flux implies that temperature is fluxed upwards, out of the ocean.
For the velocity field, we imagine a wind blowing over the ocean surface with an average velocity at 10 meters u₁₀
, and use a drag coefficient cᴰ
to estimate the kinematic stress (that is, stress divided by density) exerted by the wind on the ocean:
u₁₀ = 10 # m s⁻¹, average wind velocity 10 meters above the ocean
cᴰ = 2.5e-3 # dimensionless drag coefficient
ρₐ = 1.225 # kg m⁻³, average density of air at sea-level
Qᵘ = - ρₐ / ρₒ * cᴰ * u₁₀ * abs(u₁₀) # m² s⁻²
-0.0002984892787524367
The boundary conditions on u
are thus
u_bcs = UVelocityBoundaryConditions(grid, top = FluxBoundaryCondition(Qᵘ))
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Float64}}
For salinity, S
, we impose an evaporative flux of the form
@inline Qˢ(x, y, t, S, evaporation_rate) = - evaporation_rate * S
where S
is salinity. We use an evporation rate of 1 millimeter per hour,
evaporation_rate = 1e-3 / hour
2.7777777777777776e-7
We build the Flux
evaporation BoundaryCondition
with the function Qˢ
, indicating that Qˢ
depends on salinity S
and passing the parameter evaporation_rate
,
evaporation_bc = FluxBoundaryCondition(Qˢ, field_dependencies=:S, parameters=evaporation_rate)
BoundaryCondition: type=Flux, condition=Qˢ(x, y, t, S, evaporation_rate) in Main.ex-ocean_wind_mixing_and_convection at none:1
The full salinity boundary conditions are
S_bcs = TracerBoundaryConditions(grid, top=evaporation_bc)
Oceananigans.FieldBoundaryConditions (NamedTuple{(:x, :y, :z)}), with boundary conditions ├── x: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} ├── y: CoordinateBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing},BoundaryCondition{Oceananigans.BoundaryConditions.Periodic,Nothing}} └── z: CoordinateBoundaryConditions{BoundaryCondition{Flux,Nothing},BoundaryCondition{Flux,Oceananigans.BoundaryConditions.ContinuousBoundaryFunction{Nothing,Nothing,Nothing,Nothing,typeof(Main.ex-ocean_wind_mixing_and_convection.Qˢ),Float64,Tuple{Symbol},Nothing,Nothing}}}
Model instantiation
We fill in the final details of the model here: upwind-biased 5th-order advection for momentum and tracers, 3rd-order Runge-Kutta time-stepping, Coriolis forces, and the AnisotropicMinimumDissipation
closure for large eddy simulation to model the effect of turbulent motions at scales smaller than the grid scale that we cannot explicitly resolve.
model = IncompressibleModel(architecture = CPU(),
advection = UpwindBiasedFifthOrder(),
timestepper = :RungeKutta3,
grid = grid,
coriolis = FPlane(f=1e-4),
buoyancy = buoyancy,
closure = AnisotropicMinimumDissipation(),
boundary_conditions = (u=u_bcs, T=T_bcs, S=S_bcs))
IncompressibleModel{CPU, Float64}(time = 0 seconds, iteration = 0) ├── grid: RegularRectilinearGrid{Float64, Periodic, Periodic, Bounded}(Nx=32, Ny=32, Nz=32) ├── tracers: (:T, :S) ├── closure: AnisotropicMinimumDissipation{Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}},Float64,NamedTuple{(:T, :S),Tuple{Float64,Float64}}} ├── buoyancy: SeawaterBuoyancy{Float64,LinearEquationOfState{Float64},Nothing,Nothing} └── coriolis: FPlane{Float64}
Notes:
To use the Smagorinsky-Lilly turbulence closure (with a constant model coefficient) rather than
AnisotropicMinimumDissipation
, useclosure = ConstantSmagorinsky()
in the model constructor.To change the
architecture
toGPU
, replacearchitecture = CPU()
witharchitecture = GPU()
`
Initial conditions
Our initial condition for temperature consists of a linear stratification superposed with random noise damped at the walls, while our initial condition for velocity consists only of random noise.
# Random noise damped at top and bottom
Ξ(z) = randn() * z / model.grid.Lz * (1 + z / model.grid.Lz) # noise
# Temperature initial condition: a stable density gradient with random noise superposed.
Tᵢ(x, y, z) = 20 + dTdz * z + dTdz * model.grid.Lz * 1e-6 * Ξ(z)
# Velocity initial condition: random noise scaled by the friction velocity.
uᵢ(x, y, z) = sqrt(abs(Qᵘ)) * 1e-3 * Ξ(z)
# `set!` the `model` fields using functions or constants:
set!(model, u=uᵢ, w=uᵢ, T=Tᵢ, S=35)
Setting up a simulation
We first build a TimeStepWizard
to ensure stable time-stepping with a Courant-Freidrichs-Lewy (CFL) number of 1.0.
wizard = TimeStepWizard(cfl=1.0, Δt=10.0, max_change=1.1, max_Δt=1minute)
TimeStepWizard{Float64}(1.0, Inf, 1.1, 0.5, 60.0, 0.0, 10.0)
Nice progress messaging is helpful:
start_time = time_ns() # so we can print the total elapsed wall time
# Print a progress message
progress_message(sim) =
@printf("i: %04d, t: %s, Δt: %s, wmax = %.1e ms⁻¹, wall time: %s\n",
sim.model.clock.iteration, prettytime(model.clock.time),
prettytime(wizard.Δt), maximum(abs, sim.model.velocities.w),
prettytime((time_ns() - start_time) * 1e-9))
progress_message (generic function with 1 method)
We then set up the simulation:
simulation = Simulation(model, Δt=wizard, stop_time=40minutes, iteration_interval=10,
progress=progress_message)
Simulation{IncompressibleModel{CPU, Float64}} ├── Model clock: time = 0 seconds, iteration = 0 ├── Next time step (TimeStepWizard{Float64}): 10 seconds ├── Iteration interval: 10 ├── Stop criteria: Any[Oceananigans.Simulations.iteration_limit_exceeded, Oceananigans.Simulations.stop_time_exceeded, Oceananigans.Simulations.wall_time_limit_exceeded] ├── Run time: 0 seconds, wall time limit: Inf ├── Stop time: 40 minutes, stop iteration: Inf ├── Diagnostics: OrderedCollections.OrderedDict with 1 entry: │ └── nan_checker => NaNChecker └── Output writers: OrderedCollections.OrderedDict with no entries
Output
We use the JLD2OutputWriter
to save $x, z$ slices of the velocity fields, tracer fields, and eddy diffusivities. The prefix
keyword argument to JLD2OutputWriter
indicates that output will be saved in ocean_wind_mixing_and_convection.jld2
.
# Create a NamedTuple with eddy viscosity
eddy_viscosity = (νₑ = model.diffusivities.νₑ,)
simulation.output_writers[:slices] =
JLD2OutputWriter(model, merge(model.velocities, model.tracers, eddy_viscosity),
prefix = "ocean_wind_mixing_and_convection",
field_slicer = FieldSlicer(j=Int(grid.Ny/2)),
schedule = TimeInterval(1minute),
force = true)
JLD2OutputWriter scheduled on TimeInterval(1 minute): ├── filepath: ./ocean_wind_mixing_and_convection.jld2 ├── 6 outputs: (:u, :v, :w, :T, :S, :νₑ) ├── field slicer: FieldSlicer(:, 16, :, with_halos=false) ├── array type: Array{Float32} ├── including: [:grid, :coriolis, :buoyancy, :closure] └── max filesize: Inf YiB
We're ready:
run!(simulation)
i: 0010, t: 1.667 minutes, Δt: 10 seconds, wmax = 9.0e-06 ms⁻¹, wall time: 17.046 seconds i: 0020, t: 3 minutes, Δt: 11 seconds, wmax = 8.1e-06 ms⁻¹, wall time: 17.965 seconds i: 0030, t: 5 minutes, Δt: 12.100 seconds, wmax = 6.1e-06 ms⁻¹, wall time: 18.807 seconds i: 0040, t: 7 minutes, Δt: 13.310 seconds, wmax = 5.6e-06 ms⁻¹, wall time: 19.691 seconds i: 0050, t: 9 minutes, Δt: 14.641 seconds, wmax = 7.4e-06 ms⁻¹, wall time: 20.524 seconds i: 0060, t: 11 minutes, Δt: 12.417 seconds, wmax = 8.6e-06 ms⁻¹, wall time: 21.357 seconds i: 0070, t: 12.508 minutes, Δt: 10.162 seconds, wmax = 2.2e-05 ms⁻¹, wall time: 22.173 seconds i: 0080, t: 13.894 minutes, Δt: 8.938 seconds, wmax = 6.5e-05 ms⁻¹, wall time: 22.985 seconds i: 0090, t: 15.134 minutes, Δt: 8.044 seconds, wmax = 1.9e-04 ms⁻¹, wall time: 23.872 seconds i: 0100, t: 16.246 minutes, Δt: 7.379 seconds, wmax = 5.7e-04 ms⁻¹, wall time: 24.788 seconds i: 0110, t: 17.343 minutes, Δt: 6.860 seconds, wmax = 1.8e-03 ms⁻¹, wall time: 25.600 seconds i: 0120, t: 18.319 minutes, Δt: 6.378 seconds, wmax = 5.1e-03 ms⁻¹, wall time: 26.426 seconds i: 0130, t: 19.297 minutes, Δt: 5.936 seconds, wmax = 1.3e-02 ms⁻¹, wall time: 27.242 seconds i: 0140, t: 20.182 minutes, Δt: 5.467 seconds, wmax = 2.8e-02 ms⁻¹, wall time: 28.106 seconds i: 0150, t: 21.000 minutes, Δt: 5.111 seconds, wmax = 3.8e-02 ms⁻¹, wall time: 28.931 seconds i: 0160, t: 21.771 minutes, Δt: 4.627 seconds, wmax = 6.4e-02 ms⁻¹, wall time: 29.735 seconds i: 0170, t: 22.456 minutes, Δt: 4.562 seconds, wmax = 5.3e-02 ms⁻¹, wall time: 30.556 seconds i: 0180, t: 23.244 minutes, Δt: 4.884 seconds, wmax = 6.1e-02 ms⁻¹, wall time: 31.510 seconds i: 0190, t: 24.085 minutes, Δt: 5.071 seconds, wmax = 6.7e-02 ms⁻¹, wall time: 32.394 seconds i: 0200, t: 25 minutes, Δt: 5.578 seconds, wmax = 7.6e-02 ms⁻¹, wall time: 33.222 seconds i: 0210, t: 26 minutes, Δt: 6.136 seconds, wmax = 8.1e-02 ms⁻¹, wall time: 34.064 seconds i: 0220, t: 27.112 minutes, Δt: 6.698 seconds, wmax = 8.4e-02 ms⁻¹, wall time: 34.903 seconds i: 0230, t: 28.227 minutes, Δt: 6.819 seconds, wmax = 7.5e-02 ms⁻¹, wall time: 35.759 seconds i: 0240, t: 29.211 minutes, Δt: 6.344 seconds, wmax = 6.9e-02 ms⁻¹, wall time: 36.590 seconds i: 0250, t: 30.349 minutes, Δt: 6.978 seconds, wmax = 6.7e-02 ms⁻¹, wall time: 37.513 seconds i: 0260, t: 31.487 minutes, Δt: 7.307 seconds, wmax = 6.6e-02 ms⁻¹, wall time: 38.352 seconds i: 0270, t: 32.614 minutes, Δt: 7.365 seconds, wmax = 6.5e-02 ms⁻¹, wall time: 39.202 seconds i: 0280, t: 33.739 minutes, Δt: 7.393 seconds, wmax = 5.6e-02 ms⁻¹, wall time: 40.064 seconds i: 0290, t: 34.881 minutes, Δt: 7.553 seconds, wmax = 5.6e-02 ms⁻¹, wall time: 40.905 seconds i: 0300, t: 35.916 minutes, Δt: 6.872 seconds, wmax = 5.3e-02 ms⁻¹, wall time: 41.747 seconds i: 0310, t: 37 minutes, Δt: 7.203 seconds, wmax = 5.2e-02 ms⁻¹, wall time: 42.629 seconds i: 0320, t: 38 minutes, Δt: 7.304 seconds, wmax = 4.9e-02 ms⁻¹, wall time: 43.504 seconds i: 0330, t: 39.121 minutes, Δt: 7.265 seconds, wmax = 5.5e-02 ms⁻¹, wall time: 44.494 seconds i: 0338, t: 40 minutes, Δt: 7.112 seconds, wmax = 5.8e-02 ms⁻¹, wall time: 45.179 seconds [ Info: Simulation is stopping. Model time 40 minutes has hit or exceeded simulation stop time 40 minutes.
Turbulence visualization
We animate the data saved in ocean_wind_mixing_and_convection.jld2
. We prepare for animating the flow by creating coordinate arrays, opening the file, building a vector of the iterations that we saved data at, and defining functions for computing colorbar limits:
# Coordinate arrays
xw, yw, zw = nodes(model.velocities.w)
xT, yT, zT = nodes(model.tracers.T)
# Open the file with our data
file = jldopen(simulation.output_writers[:slices].filepath)
# Extract a vector of iterations
iterations = parse.(Int, keys(file["timeseries/t"]))
""" Returns colorbar levels equispaced between `(-clim, clim)` and encompassing the extrema of `c`. """
function divergent_levels(c, clim, nlevels=21)
cmax = maximum(abs, c)
levels = clim > cmax ? range(-clim, stop=clim, length=nlevels) : range(-cmax, stop=cmax, length=nlevels)
return (levels[1], levels[end]), levels
end
""" Returns colorbar levels equispaced between `clims` and encompassing the extrema of `c`."""
function sequential_levels(c, clims, nlevels=20)
levels = range(clims[1], stop=clims[2], length=nlevels)
cmin, cmax = minimum(c), maximum(c)
cmin < clims[1] && (levels = vcat([cmin], levels))
cmax > clims[2] && (levels = vcat(levels, [cmax]))
return clims, levels
end
Main.ex-ocean_wind_mixing_and_convection.sequential_levels
We start the animation at t = 10minutes
since things are pretty boring till then:
times = [file["timeseries/t/$iter"] for iter in iterations]
intro = searchsortedfirst(times, 10minutes)
anim = @animate for (i, iter) in enumerate(iterations[intro:end])
@info "Drawing frame $i from iteration $iter..."
t = file["timeseries/t/$iter"]
w = file["timeseries/w/$iter"][:, 1, :]
T = file["timeseries/T/$iter"][:, 1, :]
S = file["timeseries/S/$iter"][:, 1, :]
νₑ = file["timeseries/νₑ/$iter"][:, 1, :]
wlims, wlevels = divergent_levels(w, 2e-2)
Tlims, Tlevels = sequential_levels(T, (19.7, 19.99))
Slims, Slevels = sequential_levels(S, (35, 35.005))
νlims, νlevels = sequential_levels(νₑ, (1e-6, 5e-3))
kwargs = (linewidth=0, xlabel="x (m)", ylabel="z (m)", aspectratio=1,
xlims=(0, grid.Lx), ylims=(-grid.Lz, 0))
w_plot = contourf(xw, zw, w'; color=:balance, clims=wlims, levels=wlevels, kwargs...)
T_plot = contourf(xT, zT, T'; color=:thermal, clims=Tlims, levels=Tlevels, kwargs...)
S_plot = contourf(xT, zT, S'; color=:haline, clims=Slims, levels=Slevels, kwargs...)
# We use a heatmap for the eddy viscosity to observe how it varies on the grid scale.
ν_plot = heatmap(xT, zT, νₑ'; color=:thermal, clims=νlims, levels=νlevels, kwargs...)
w_title = @sprintf("vertical velocity (m s⁻¹), t = %s", prettytime(t))
T_title = "temperature (ᵒC)"
S_title = "salinity (g kg⁻¹)"
ν_title = "eddy viscosity (m² s⁻¹)"
# Arrange the plots side-by-side.
plot(w_plot, T_plot, S_plot, ν_plot, layout=(2, 2), size=(1200, 600),
title=[w_title T_title S_title ν_title])
iter == iterations[end] && close(file)
end
This page was generated using Literate.jl.