Intro to observations

This example demonstrates the features of SyntheticObservations when constructed from "synthetic observations" generated by an Oceananigans Simulation.

Install dependencies

First let's make sure we have all required packages installed.

using Pkg
pkg"add ParameterEstimocean, Oceananigans, CairoMakie"

First we load few things

using ParameterEstimocean
using Oceananigans
using Oceananigans.Units
using Oceananigans.TurbulenceClosures: ConvectiveAdjustmentVerticalDiffusivity
using CairoMakie

Generating synthetic observations

We define a utility function for constructing synthetic observations,

default_closure = ConvectiveAdjustmentVerticalDiffusivity(; convective_κz = 1.0,
                                                            convective_νz = 0.9,
                                                            background_κz = 1e-4,
                                                            background_νz = 1e-5)

function generate_synthetic_observations(name = "convective_adjustment"; Nz = 32, Lz = 64,
                                         Qᵇ = +1e-8, Qᵘ = -1e-5, f₀ = 1e-4, N² = 1e-6,
                                         Δt = 10.0, stop_time = 12hours, overwrite=false,
                                         output_schedule = TimeInterval(stop_time/3),
                                         tracers = :b, closure = default_closure)

    data_path = name * ".jld2"

    if isfile(data_path) && !overwrite
        @warn("Using existing data at $data_path. " *
              "Please delete this file if you wish to generate new data.")

        return data_path
    else
        overwrite_existing = true
    end

    grid = RectilinearGrid(size=Nz, z=(-Lz, 0), topology=(Flat, Flat, Bounded))
    u_bcs = FieldBoundaryConditions(top = FluxBoundaryCondition(Qᵘ))
    b_bcs = FieldBoundaryConditions(top = FluxBoundaryCondition(Qᵇ), bottom = GradientBoundaryCondition(N²))

    model = HydrostaticFreeSurfaceModel(; grid, tracers, closure,
                                          buoyancy = BuoyancyTracer(),
                                          boundary_conditions = (u=u_bcs, b=b_bcs),
                                          coriolis = FPlane(f=f₀))

    set!(model, b = (x, y, z) -> N² * z)
    simulation = Simulation(model; Δt, stop_time)
    init_with_parameters(file, model) = file["parameters"] = (; Qᵇ, Qᵘ, Δt, N², tracers=keys(model.tracers))

    simulation.output_writers[:fields] = JLD2OutputWriter(model, merge(model.velocities, model.tracers);
                                                          schedule = output_schedule,
                                                          filename = name,
                                                          array_type = Array{Float64},
                                                          with_halos = true,
                                                          init = init_with_parameters,
                                                          overwrite_existing)

    run!(simulation)

    return data_path
end
generate_synthetic_observations (generic function with 2 methods)

and invoke it:

data_path = generate_synthetic_observations()
"convective_adjustment.jld2"

Specifying observations

When synthetic observations are constructed from simulation data, we can select

  • The fields to include via field_names

  • Which data in the time-series to include via the times keyword. This can be used to change the initial condition for a calibration run.

For example, to build observations with a single field we write,

single_field_observations = SyntheticObservations(data_path, field_names=:b, transformation=ZScore())
SyntheticObservations with fields (:b,)
├── times: [0 s, 4 hrs, 8 hrs, 12 hrs]
├── grid: 1×1×32 RectilinearGrid{Float64, Oceananigans.Grids.Flat, Oceananigans.Grids.Flat, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 0×0×3 halo
├── path: "convective_adjustment.jld2"
├── metadata: (:parameters, :grid, :coriolis, :closure)
└── transformation: Dict{Symbol, ParameterEstimocean.Transformations.Transformation{TimeIndices{UnitRange{Int64}}, Nothing, ZScore{Float64}}} with 1 entry

To build observations with two fields we write

two_field_observations = SyntheticObservations(data_path, field_names=(:u, :b), transformation=ZScore())
SyntheticObservations with fields (:u, :b)
├── times: [0 s, 4 hrs, 8 hrs, 12 hrs]
├── grid: 1×1×32 RectilinearGrid{Float64, Oceananigans.Grids.Flat, Oceananigans.Grids.Flat, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 0×0×3 halo
├── path: "convective_adjustment.jld2"
├── metadata: (:parameters, :grid, :coriolis, :closure)
└── transformation: Dict{Symbol, ParameterEstimocean.Transformations.Transformation{TimeIndices{UnitRange{Int64}}, Nothing, ZScore{Float64}}} with 2 entries

And to build observations with specified times we write

times = single_field_observations.times[2:end]
specified_times_observations = SyntheticObservations(data_path, field_names=(:u, :b), transformation=ZScore(), times=times)
SyntheticObservations with fields (:u, :b)
├── times: [4 hrs, 8 hrs, 12 hrs]
├── grid: 1×1×32 RectilinearGrid{Float64, Oceananigans.Grids.Flat, Oceananigans.Grids.Flat, Oceananigans.Grids.Bounded} on Oceananigans.Architectures.CPU with 0×0×3 halo
├── path: "convective_adjustment.jld2"
├── metadata: (:parameters, :grid, :coriolis, :closure)
└── transformation: Dict{Symbol, ParameterEstimocean.Transformations.Transformation{TimeIndices{UnitRange{Int64}}, Nothing, ZScore{Float64}}} with 2 entries

Notice that in the last case, specified_times_observations.times is missing 0.0.

Visualizing observations

For this we include the initial condition and $v$ velocity component,

observations = SyntheticObservations(data_path, field_names=(:u, :v, :b), transformation=ZScore())

fig = Figure()

ax_b = Axis(fig[1, 1], xlabel = "Buoyancy [m s⁻²]", ylabel = "z [m]")
ax_u = Axis(fig[1, 2], xlabel = "Velocities [m s⁻¹]", ylabel = "z [m]")

z = znodes(observations.grid, Center())

colorcycle = [:black, :red, :blue, :orange, :pink]

for i = 1:length(observations.times)
    b_ = observations.field_time_serieses.b[i]
    u_ = observations.field_time_serieses.u[i]
    v_ = observations.field_time_serieses.v[i]
    t_ = observations.times[i]

    label = "t = " * prettytime(t_)
    u_label = i == 1 ? "u, " * label : label
    v_label = i == 1 ? "v, " * label : label

    lines!(ax_b, 1e4 * interior(b_)[1, 1, :], z; label, color=colorcycle[i]) # convert units from m s⁻² to 10⁻⁴ m s⁻²
    lines!(ax_u, interior(u_)[1, 1, :], z; linestyle=:solid, color=colorcycle[i], label=u_label)
    lines!(ax_u, interior(v_)[1, 1, :], z; linestyle=:dash, color=colorcycle[i], label=v_label)
end

axislegend(ax_b, position=:rb)
axislegend(ax_u, position=:lb, merge=true)

save("intro_to_observations.svg", fig)
CairoMakie.Screen{SVG}

Hint: if using a REPL or notebook, try using Pkg; Pkg.add("ElectronDisplay"); using ElectronDisplay; display(fig) To see the figure in a window.


This page was generated using Literate.jl.