Samplers
RandomFeatures.Samplers.Sampler — Typestruct Sampler{RNG<:Random.AbstractRNG}Wraps the parameter distributions used to sample random features
parameter_distribution::EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution: A probability distribution, possibly with constraintsrng::Random.AbstractRNG: A random number generator state
RandomFeatures.Samplers.FeatureSampler — FunctionFeatureSampler(
parameter_distribution::EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution,
bias_distribution::Union{Nothing, EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution};
rng
) -> Sampler{Random._GLOBAL_RNG}
basic constructor for a Sampler
FeatureSampler(
parameter_distribution::EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution,
output_dim::Int64;
uniform_shift_bounds,
rng
) -> Sampler{Random._GLOBAL_RNG}
one can conveniently specify the bias as a uniform-shift uniform_shift_bounds with output_dim dimensions
RandomFeatures.Samplers.get_parameter_distribution — Functionget_parameter_distribution(
s::Sampler
) -> EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution
gets the parameter_distribution field
RandomFeatures.Samplers.get_rng — Functionget_rng(s::Sampler) -> Random.AbstractRNG
gets the rng field
StatsBase.sample — Methodsample(
rng::Random.AbstractRNG,
s::Sampler,
n_draws::Int64
) -> EnsembleKalmanProcesses.ParameterDistributions.ParameterDistribution
samples the distribution within s, n_draws times using a random number generator rng. Can be called without rng (defaults to s.rng) or n_draws (defaults to 1)