Utilities
Batching
RandomFeatures.Utilities.batch_generator — Functionbatch_generator(
array::AbstractArray,
batch_size::Int64;
dims
) -> Any
produces batched sub-array views of size batch_size along dimension dims.
this creates views not copies. Modifying a batch will modify the original!
Matrix Decomposition
RandomFeatures.Utilities.Decomposition — Typestruct Decomposition{T, M<:(AbstractMatrix), MorF<:Union{AbstractMatrix, LinearAlgebra.Factorization}}Stores a matrix along with a decomposition T=Factor, or pseudoinverse T=PseInv, and also computes the inverse of the Factored matrix (for several predictions this is actually the most computationally efficient action)
full_matrix::AbstractMatrix: The original matrixdecomposition::Union{AbstractMatrix, LinearAlgebra.Factorization}: The matrix decomposition, or pseudoinverseinv_decomposition::AbstractMatrix: The matrix decomposition of the inverse, or pseudoinverse
RandomFeatures.Utilities.StoredInvType — Typeabstract type StoredInvTypeType used as a flag for the stored Decomposition type
RandomFeatures.Utilities.Factor — Typeabstract type Factor <: StoredInvTypeRandomFeatures.Utilities.PseInv — Typeabstract type PseInv <: StoredInvTypeRandomFeatures.Utilities.get_decomposition — Functionget_decomposition(
d::Decomposition
) -> Union{AbstractMatrix, LinearAlgebra.Factorization}
get decomposition field
RandomFeatures.Utilities.get_full_matrix — Functionget_full_matrix(d::Decomposition) -> AbstractMatrix
get full_matrix field
RandomFeatures.Utilities.get_parametric_type — Functionget_parametric_type(
d::Decomposition{T, M<:Union{AbstractMatrix, LinearAlgebra.Factorization}}
) -> Any
get the parametric type
RandomFeatures.Utilities.linear_solve — Functionlinear_solve(
d::Decomposition,
rhs::AbstractArray{<:AbstractFloat, 3},
::Type{Factor};
tullio_threading
) -> Any
Solve the linear system based on Decomposition type