References

[1]
D. M. Romps. The dry-entropy budget of a moist atmosphere. Journal of the Atmospheric Sciences 65, 3779–3799 (2008).
[2]
A. Bott. Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres. Atmos. Res. 89, 252–269 (2008).
[3]
P. Marquet and J.-F. Geleyn. Formulations of moist thermodynamics for atmospheric modelling. In: Parameterization of Atmospheric Convection, Vol. 2, edited by R. S. Plant and J.-I. Yano (Imperial College Press, London, UK, 2016); Chapter 22, pp. 221–274.
[4]
D. Yatunin, S. Byrne, C. Kawczynski, S. Kandala, G. Bozzola, A. Sridhar, Z. Shen, A. Jaruga, J. Sloan, J. He, D. Z. Huang, V. Barra, O. Knoth, P. Ullrich and T. Schneider. The CliMA atmosphere dynamical core: Concepts, numerics, and scaling. J. Adv. Model. Earth Sys. in review (2025).
[5]
J. D. Neelin and I. M. Held. Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review 115, 3–12 (1987).
[6]
D. M. Romps. MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. Journal of the Atmospheric Sciences 72, 3639–3646 (2015).
[7]
D. M. Romps. The Rankine–Kirchhoff approximations for moist thermodynamics. Quart. J. Roy. Meteor. Soc. 147, 3493–3497 (2021).
[8]
K. G. Pressel, C. M. Kaul, T. Schneider, Z. Tan and S. Mishra. Large-eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems 7, 1425–1456 (2015).
[9]
G. J. Tripoli and W. R. Cotton. The use of lce-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Monthly Weather Review 109, 1094–1102 (1981).
[10]
G. H. Bryan and J. M. Fritsch. A reevaluation of ice–liquid water potential temperature. Monthly weather review 132, 2421–2431 (2004).
[11]
D. R. Durran. Finite-Volume Methods. In: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (Springer, 1999); pp. 241–302.