References
- [1]
- D. M. Romps. The dry-entropy budget of a moist atmosphere. Journal of the Atmospheric Sciences 65, 3779–3799 (2008).
- [2]
- A. Bott. Theoretical considerations on the mass and energy consistent treatment of precipitation in cloudy atmospheres. Atmos. Res. 89, 252–269 (2008).
- [3]
- P. Marquet and J.-F. Geleyn. Formulations of moist thermodynamics for atmospheric modelling. In: Parameterization of Atmospheric Convection, Vol. 2, edited by R. S. Plant and J.-I. Yano (Imperial College Press, London, UK, 2016); Chapter 22, pp. 221–274.
- [4]
- D. Yatunin, S. Byrne, C. Kawczynski, S. Kandala, G. Bozzola, A. Sridhar, Z. Shen, A. Jaruga, J. Sloan, J. He, D. Z. Huang, V. Barra, O. Knoth, P. Ullrich and T. Schneider. The CliMA atmosphere dynamical core: Concepts, numerics, and scaling. J. Adv. Model. Earth Sys. in review (2025).
- [5]
- J. D. Neelin and I. M. Held. Modeling tropical convergence based on the moist static energy budget. Monthly Weather Review 115, 3–12 (1987).
- [6]
- D. M. Romps. MSE minus CAPE is the true conserved variable for an adiabatically lifted parcel. Journal of the Atmospheric Sciences 72, 3639–3646 (2015).
- [7]
- D. M. Romps. The Rankine–Kirchhoff approximations for moist thermodynamics. Quart. J. Roy. Meteor. Soc. 147, 3493–3497 (2021).
- [8]
- K. G. Pressel, C. M. Kaul, T. Schneider, Z. Tan and S. Mishra. Large-eddy simulation in an anelastic framework with closed water and entropy balances. Journal of Advances in Modeling Earth Systems 7, 1425–1456 (2015).
- [9]
- G. J. Tripoli and W. R. Cotton. The use of lce-liquid water potential temperature as a thermodynamic variable in deep atmospheric models. Monthly Weather Review 109, 1094–1102 (1981).
- [10]
- G. H. Bryan and J. M. Fritsch. A reevaluation of ice–liquid water potential temperature. Monthly weather review 132, 2421–2431 (2004).
- [11]
- D. R. Durran. Finite-Volume Methods. In: Numerical Methods for Wave Equations in Geophysical Fluid Dynamics (Springer, 1999); pp. 241–302.