An unstable Bickley jet in Shallow Water model

This example uses Oceananigans.jl's ShallowWaterModel to simulate the evolution of an unstable, geostrophically balanced, Bickley jet The example is periodic in $x$ with flat bathymetry and uses the conservative formulation of the shallow water equations. The initial conditions superpose the Bickley jet with small-amplitude perturbations. See "The nonlinear evolution of barotropically unstable jets," J. Phys. Oceanogr. (2003) for more details on this problem.

The mass transport $(uh, vh)$ is the prognostic momentum variable in the conservative formulation of the shallow water equations, where $(u, v)$ are the horizontal velocity components and $h$ is the layer height.

Install dependencies

First we make sure that we have all of the packages that are required to run the simulation.

using Pkg
pkg"add Oceananigans, NCDatasets, Polynomials, CairoMakie"
using Oceananigans
using Oceananigans.Models: ShallowWaterModel

Two-dimensional domain

The shallow water model is two-dimensional and uses grids that are Flat in the vertical direction. We use length scales non-dimensionalized by the width of the Bickley jet.

grid = RectilinearGrid(size = (48, 128),
                       x = (0, 2π),
                       y = (-10, 10),
                       topology = (Periodic, Bounded, Flat))
48×128×1 RectilinearGrid{Float64, Periodic, Bounded, Flat} on CPU with 3×3×0 halo
├── Periodic x ∈ [-1.67581e-17, 6.28319) regularly spaced with Δx=0.1309
├── Bounded  y ∈ [-10.0, 10.0]           regularly spaced with Δy=0.15625
└── Flat z                               

Building a ShallowWaterModel

We build a ShallowWaterModel with the WENO advection scheme, 3rd-order Runge-Kutta time-stepping, non-dimensional Coriolis, and gravitational acceleration

gravitational_acceleration = 1
coriolis = FPlane(f=1)

model = ShallowWaterModel(; grid, coriolis, gravitational_acceleration,
                          timestepper = :RungeKutta3,
                          momentum_advection = WENO())
ShallowWaterModel{typename(CPU), Float64}(time = 0 seconds, iteration = 0) 
├── grid: 48×128×1 RectilinearGrid{Float64, Periodic, Bounded, Flat} on CPU with 3×3×0 halo
├── timestepper: RungeKutta3TimeStepper
├── advection scheme: 
│   ├── momentum: WENO reconstruction order 5
│   └── mass: WENO reconstruction order 5
├── tracers: ()
└── coriolis: FPlane{Float64}

Background state and perturbation

The background velocity $ū$ and free-surface $η̄$ correspond to a geostrophically balanced Bickely jet with maximum speed of $U$ and maximum free-surface deformation of $Δη$,

U = 1  # Maximum jet velocity
H = 10 # Reference depth
f = coriolis.f
g = gravitational_acceleration
Δη = f * U / g  # Maximum free-surface deformation as dictated by geostrophy

h̄(x, y) = H - Δη * tanh(y)
ū(x, y) = U * sech(y)^2
ū (generic function with 1 method)

The total height of the fluid is $h = L_z + \eta$. Linear stability theory predicts that for the parameters we consider here, the growth rate for the most unstable mode that fits our domain is approximately $0.139$.

The vorticity of the background state is

ω̄(x, y) = 2 * U * sech(y)^2 * tanh(y)
ω̄ (generic function with 1 method)

The initial conditions include a small-amplitude perturbation that decays away from the center of the jet.

small_amplitude = 1e-4

 uⁱ(x, y) = ū(x, y) + small_amplitude * exp(-y^2) * randn()
uhⁱ(x, y) = uⁱ(x, y) * h̄(x, y)
uhⁱ (generic function with 1 method)

We first set a "clean" initial condition without noise for the purpose of discretely calculating the initial 'mean' vorticity,

ū̄h(x, y) = ū(x, y) * h̄(x, y)

set!(model, uh = ū̄h, h = h̄)

We next compute the initial vorticity and perturbation vorticity,

uh, vh, h = model.solution

# Build velocities
u = uh / h
v = vh / h

# Build and compute mean vorticity discretely
ω = Field(∂x(v) - ∂y(u))
compute!(ω)

# Copy mean vorticity to a new field
ωⁱ = Field((Face, Face, Nothing), model.grid)
ωⁱ .= ω

# Use this new field to compute the perturbation vorticity
ω′ = Field(ω - ωⁱ)
48×129×1 Field{Face, Face, Center} on RectilinearGrid on CPU
├── grid: 48×128×1 RectilinearGrid{Float64, Periodic, Bounded, Flat} on CPU with 3×3×0 halo
├── boundary conditions: FieldBoundaryConditions
│   └── west: Periodic, east: Periodic, south: Nothing, north: Nothing, bottom: Nothing, top: Nothing, immersed: ZeroFlux
├── operand: BinaryOperation at (Face, Face, Center)
├── status: time=0.0
└── data: 54×135×1 OffsetArray(::Array{Float64, 3}, -2:51, -2:132, 1:1) with eltype Float64 with indices -2:51×-2:132×1:1
    └── max=0.0, min=0.0, mean=0.0

and finally set the "true" initial condition with noise,

set!(model, uh = uhⁱ)

Running a Simulation

We pick the time-step so that we make sure we resolve the surface gravity waves, which propagate with speed of the order $\sqrt{g H}$. That is, with Δt = 1e-2 we ensure that $\sqrt{g H} Δt / Δx, \sqrt{g H} Δt / Δy < 0.7$.

simulation = Simulation(model, Δt = 1e-2, stop_time = 100)
Simulation of ShallowWaterModel{RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, CPU, Float64, Float64, @NamedTuple{momentum::WENO{3, Float64, Nothing, Nothing, Nothing, Nothing, WENO{2, Float64, Nothing, Nothing, Nothing, Nothing, UpwindBiased{1, Float64, Nothing, Nothing, Nothing, Nothing, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}, Centered{2, Float64, Nothing, Nothing, Nothing, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}}, mass::WENO{3, Float64, Nothing, Nothing, Nothing, Nothing, WENO{2, Float64, Nothing, Nothing, Nothing, Nothing, UpwindBiased{1, Float64, Nothing, Nothing, Nothing, Nothing, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}, Centered{2, Float64, Nothing, Nothing, Nothing, Centered{1, Float64, Nothing, Nothing, Nothing, Nothing}}}}, @NamedTuple{u::Field{Face, Center, Center, BinaryOperation{Face, Center, Center, typeof(/), Field{Face, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Field{Center, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, typeof(Oceananigans.Operators.identity4), typeof(ℑxᶠᵃᵃ), RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Float64}, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Oceananigans.Fields.FieldStatus{Float64}, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, v::Field{Center, Face, Center, BinaryOperation{Center, Face, Center, typeof(/), Field{Center, Face, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Open{Nothing}, Nothing}, BoundaryCondition{Open{Nothing}, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, Field{Center, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, typeof(Oceananigans.Operators.identity5), typeof(ℑyᵃᶠᵃ), RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Float64}, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, Nothing, Nothing, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Oceananigans.Fields.FieldStatus{Float64}, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, w::Nothing}, FPlane{Float64}, @NamedTuple{uh::typeof(Oceananigans.Forcings.zeroforcing), vh::typeof(Oceananigans.Forcings.zeroforcing), h::typeof(Oceananigans.Forcings.zeroforcing)}, Nothing, Field{Center, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, @NamedTuple{uh::Field{Face, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, vh::Field{Center, Face, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Open{Nothing}, Nothing}, BoundaryCondition{Open{Nothing}, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, h::Field{Center, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}}, @NamedTuple{}, Nothing, RungeKutta3TimeStepper{Float64, @NamedTuple{uh::Field{Face, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, vh::Field{Center, Face, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, Nothing, Nothing, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}, h::Field{Center, Center, Center, Nothing, RectilinearGrid{Float64, Periodic, Bounded, Flat, Float64, Float64, Float64, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, OffsetArrays.OffsetVector{Float64, StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}}, Nothing, CPU}, Tuple{Colon, Colon, Colon}, OffsetArrays.OffsetArray{Float64, 3, Array{Float64, 3}}, Float64, FieldBoundaryConditions{BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Oceananigans.BoundaryConditions.Periodic, Nothing}, BoundaryCondition{Flux, Nothing}, BoundaryCondition{Flux, Nothing}, Nothing, Nothing, BoundaryCondition{Flux, Nothing}}, Nothing, Oceananigans.Fields.FieldBoundaryBuffers{Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}}}, Nothing}, ConservativeFormulation}
├── Next time step: 10 ms
├── Elapsed wall time: 0 seconds
├── Wall time per iteration: NaN days
├── Stop time: 1.667 minutes
├── Stop iteration : Inf
├── Wall time limit: Inf
├── Callbacks: OrderedDict with 4 entries:
│   ├── stop_time_exceeded => Callback of stop_time_exceeded on IterationInterval(1)
│   ├── stop_iteration_exceeded => Callback of stop_iteration_exceeded on IterationInterval(1)
│   ├── wall_time_limit_exceeded => Callback of wall_time_limit_exceeded on IterationInterval(1)
│   └── nan_checker => Callback of NaNChecker for uh on IterationInterval(100)
├── Output writers: OrderedDict with no entries
└── Diagnostics: OrderedDict with no entries

Prepare output files

Define a function to compute the norm of the perturbation on the cross channel velocity. We obtain the norm function from LinearAlgebra.

using LinearAlgebra: norm

perturbation_norm(args...) = norm(v)
perturbation_norm (generic function with 1 method)

Build the output_writer for the two-dimensional fields to be output. Output every t = 1.0.

fields_filename = joinpath(@__DIR__, "shallow_water_Bickley_jet_fields.nc")
simulation.output_writers[:fields] = NetCDFOutputWriter(model, (; ω, ω′),
                                                        filename = fields_filename,
                                                        schedule = TimeInterval(2),
                                                        overwrite_existing = true)
NetCDFOutputWriter scheduled on TimeInterval(2 seconds):
├── filepath: /var/lib/buildkite-agent/builds/tartarus-10/clima/oceananigans/docs/src/literated/shallow_water_Bickley_jet_fields.nc
├── dimensions: zC(1), zF(1), xC(48), yF(129), xF(48), yC(128), time(0)
├── 2 outputs: (ω, ω′)
└── array type: Array{Float64}
├── file_splitting: NoFileSplitting
└── file size: 16.8 KiB

Build the output_writer for the growth rate, which is a scalar field. Output every time step.

growth_filename = joinpath(@__DIR__, "shallow_water_Bickley_jet_perturbation_norm.nc")
simulation.output_writers[:growth] = NetCDFOutputWriter(model, (; perturbation_norm),
                                                        filename = growth_filename,
                                                        schedule = IterationInterval(1),
                                                        dimensions = (; perturbation_norm = ()),
                                                        overwrite_existing = true)
NetCDFOutputWriter scheduled on IterationInterval(1):
├── filepath: /var/lib/buildkite-agent/builds/tartarus-10/clima/oceananigans/docs/src/literated/shallow_water_Bickley_jet_perturbation_norm.nc
├── dimensions: zC(1), zF(1), xC(48), yF(129), xF(48), yC(128), time(0)
├── 1 outputs: perturbation_norm
└── array type: Array{Float64}
├── file_splitting: NoFileSplitting
└── file size: 14.7 KiB

And finally run the simulation.

run!(simulation)
[ Info: Initializing simulation...
[ Info:     ... simulation initialization complete (8.502 seconds)
[ Info: Executing initial time step...
[ Info:     ... initial time step complete (4.986 seconds).
[ Info: Simulation is stopping after running for 2.638 minutes.
[ Info: Simulation time 1.667 minutes equals or exceeds stop time 1.667 minutes.

Visualize the results

Load required packages to read output and plot.

using NCDatasets, Printf, CairoMakie

Define the coordinates for plotting.

x, y = xnodes(ω), ynodes(ω)

Read in the output_writer for the two-dimensional fields and then create an animation showing both the total and perturbation vorticities.

fig = Figure(size = (1200, 660))

axis_kwargs = (xlabel = "x", ylabel = "y")
ax_ω  = Axis(fig[2, 1]; title = "Total vorticity, ω", axis_kwargs...)
ax_ω′ = Axis(fig[2, 3]; title = "Perturbation vorticity, ω - ω̄", axis_kwargs...)

n = Observable(1)

ds = NCDataset(simulation.output_writers[:fields].filepath, "r")

times = ds["time"][:]

ω = @lift ds["ω"][:, :, 1, $n]
hm_ω = heatmap!(ax_ω, x, y, ω, colorrange = (-1, 1), colormap = :balance)
Colorbar(fig[2, 2], hm_ω)

ω′ = @lift ds["ω′"][:, :, 1, $n]
hm_ω′ = heatmap!(ax_ω′, x, y, ω′, colormap = :balance)
Colorbar(fig[2, 4], hm_ω′)

title = @lift @sprintf("t = %.1f", times[$n])
fig[1, 1:4] = Label(fig, title, fontsize=24, tellwidth=false)

fig

Finally, we record a movie.

frames = 1:length(times)

record(fig, "shallow_water_Bickley_jet.mp4", frames, framerate=12) do i
    n[] = i
end

It's always good practice to close the NetCDF files when we are done.

close(ds)
closed Dataset

Read in the output_writer for the scalar field (the norm of $v$-velocity).

ds2 = NCDataset(simulation.output_writers[:growth].filepath, "r")

     t = ds2["time"][:]
norm_v = ds2["perturbation_norm"][:]

close(ds2)

We import the fit function from Polynomials.jl to compute the best-fit slope of the perturbation norm on a logarithmic plot. This slope corresponds to the growth rate.

using Polynomials: fit

I = 5000:6000

degree = 1
linear_fit_polynomial = fit(t[I], log.(norm_v[I]), degree, var = :t)
-8.91889304072016 + 0.13836572196296926∙t

We can get the coefficient of the $n$-th power from the fitted polynomial by using n as an index, e.g.,

constant, slope = linear_fit_polynomial[0], linear_fit_polynomial[1]
(-8.91889304072016, 0.13836572196296926)

We then use the computed linear fit coefficients to construct the best fit and plot it together with the time-series for the perturbation norm for comparison.

best_fit = @. exp(constant + slope * t)

lines(t, norm_v;
      linewidth = 4,
      label = "norm(v)",
      axis = (yscale = log10,
              limits = (nothing, (1e-3, 30)),
              xlabel = "time",
              ylabel = "norm(v)",
               title = "growth of perturbation norm"))

lines!(t[I], 2 * best_fit[I]; # factor 2 offsets fit from curve for better visualization
       linewidth = 4,
       label = "best fit")

axislegend(position = :rb)

The slope of the best-fit curve on a logarithmic scale approximates the rate at which instability grows in the simulation. Let's see how this compares with the theoretical growth rate.

println("Numerical growth rate is approximated to be ", round(slope, digits=3), ",\n",
        "which is very close to the theoretical value of 0.139.")
Numerical growth rate is approximated to be 0.138,
which is very close to the theoretical value of 0.139.

This page was generated using Literate.jl.