Geoffrey K Vallis, Atmospheric and oceanic fluid dynamics, Cambridge University Press, 2017.
Pijush K. Kundu, Ira M. Cohen, David R Dowling, Fluid mechanics, Academic Press, 2015.
Horace Lamb, Hydrodynamics, Dover Publications, 1945.
G. K. Batchelor, An introduction to fluid dynamics, Cambridge University Press, 2000.
L. D. Landau, E. M. Lifshitz, Fluid mechanics: Volume 6 (Course of theoretical physics), Butterworth-Heinemann, 1987.
Suhas Patankar, Numerical heat transfer and fluid flow, CRC Press, 1980.
S. B. Pope, Turbulent flows, Cambridge University Press, 2000.
P. Sagaut, C. Meneveau, Large eddy simulation for incompressible flows: An introduction, Springer, 2006.
Jan S Hesthaven, Tim Warburton, Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, Springer Science \& Business Media, 2007.
John Marshall, Alistair Adcroft, Chris Hill, Lev Perelman, Curt Heisey, A finite-volume, incompressible {Navier–Stokes} model for studies of the ocean on parallel computers, Journal of Geophysical Research: Oceans, 102(C3), 5753–5766, 1997.
John Marshall, Chris Hill, Lev Perelman, Alistair Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, Journal of Geophysical Research: Oceans, 102(C3), 5733–5752, 1997.
Jeff Bezanson, Alan Edelman, Stefan Karpinski, Viral B. Shah, Julia: A fresh approach to numerical computing, SIAM Review, 59, 65–98, 2017.
Tim Besard, Pieter Verstraete, Bjorn De Sutter, High-level GPU programming in Julia, arXiv:1604.03410 [cs], 0, 2016.
Tim Besard, Christophe Foket, Bjorn De Sutter, Effective extensible programming: unleashing Julia on GPUs, IEEE Transactions on Parallel and Distributed Systems, 30(4), 827–841, 2019.
Tim Besard, Valentin Churavy, Alan Edelman, Bjorn De Sutter, Rapid software prototyping for heterogeneous and distributed platforms, Advances in Engineering Software, 132, 29–46, 2019.
Jarrett Revels, Tim Besard, Valentin Churavy, Bjorn De Sutter, Juan Pablo Vielma, Dynamic automatic differentiation of GPU broadcast kernels, arXiv:1810.08297 [cs], 2018.
Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B. Shah, Will Tebbutt, A differentiable programming system to bridge machine learning and scientific computing, arXiv:1907.07587 [cs], 2019.
Joseph Boussinesq, Th{\=o}rie analytique de la chaleur, Gauthier-Villars, Tome, Paris, 1903.
J. Boussinesq, Essai sur la th{\'e}orie des eaux courantes, Impr. Nationale, 1877.
A. A. White, B. J. Hoskins, I. Roulstone, A. Staniforth, Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Quarterly Journal of the Royal Meteorological Society, 131(609), 2081–2107, 2005.
Steven A. Orszag, Moshe Israeli, Michel O. Deville, Boundary conditions for incompressible flows, Journal of Scientific Computing, 1(1), 75–111, 1986.
David L. Brown, Ricardo Cortez, Michael L. Minion, Accurate projection methods for the incompressible {Navier–Stokes} equations, Journal of Computational Physics, 168(2), 464–499, 2001.
Akio Arakawa, Vivian R. Lamb, Computational design of the basic dynamical processes of the UCLA General Circulation Model, In Methods in Computational Physics: Advances in Research and Applications, editors, 173–265. Elsevier, 1977.
Francis H. Harlow, J. Eddie Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Physics of Fluids, 8(12), 2182–89, 1965.
N. Kumar, J.H.M. Boonkkamp, B. Koren, Local BVP methods for the computation of cell-face velocities in the incompressible {Navier–Stokes} equations, Technische Universiteit Eindhoven, 2016.
R. L. Sani, P. M. Gresho, R. L. Lee, D. F. Griffiths, The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible {Navier–Stokes} equations: Part 1, International Journal for Numerical Methods in Fluids, 1(1), 17–43, 1981.
U. Ascher, S. Ruuth, B. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM Journal on Numerical Analysis, 32(3), 797–823, 1995.
B. Buzbee, G. Golub, C. Nielson, On direct methods for solving Poisson’s equations, SIAM Journal on Numerical Analysis, 7(4), 627–656, 1970.
Paul J Dellar, Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere, Journal of Fluid Mechanics, 674, 174, 2011.
R. W. Hockney, A fast direct solution of Poisson's equation using Fourier analysis, Journal of the ACM, 12, 95–113, 1965.
Ulrich Schumann, Roland A Sweet, Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions, Journal of Computational Physics, 75, 123–137, 1988.
R. W. Hockney, The potential calculation and some applications, In Methods of Computational Physics, editors, B. Adler, S. Fernback, M. Rotenberg, 136–211. Academic Press, New York and London, 1969.
Clive Temperton, Direct methods for the solution of the discrete Poisson equation: Some comparisons, Journal of Computational Physics, 31, 1–20, 1979.
Clive Temperton, On the FACR$(\ell)$ algorithm for the discrete Poisson equation, Journal of Computational Physics, 34(3), 314–329, 1980.
M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proceedings of the IEEE, 93(2), 216–231, 2005.
M. Frigo, S.G. Johnson, FFTW: an adaptive software architecture for the FFT, In Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), 1381–1384, Seattle, WA, USA, 1998. IEEE.
J. Makhoul, A fast cosine transform in one and two dimensions, IEEE Transactions on Acoustics, Speech, and Signal Processing, 28, 27–34, 1980.
Chi-Wang Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, In Advanced numerical approximation of nonlinear hyperbolic equations, editors, Alfio Quarteroni, 325–432. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.
H. Le, P. Moin, An improvement of fractional step methods for the incompressible {Navier–Stokes} equations, Journal of Computational Physics, 92(2), 369–379, 1991.
Xu-Dong Liu, Stanley Osher, Tony Chan, Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115, 200–212, 1994.
Guang-Shan Jiang, Chi-Wang Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126, 202–228, 1996.
Doron Levy, Gabriella Puppo, Giovanni Russo, Central WENO schemes for hyperbolic systems of conservation laws, ESAIM: Mathematical Modelling and Numerical Analysis, 33(3), 547–571, 1999.
F. Bianco, G. Puppo, G. Russo, High-order central schemes for hyperbolic systems of conservation laws, SIAM Journal on Scientific Computing, 21, 294–322, 1999.
Guido Schroeder, K. Heinke Schlünzen, Frank Schimmel, Use of (weighted) essentially non-oscillatory advection schemes in a mesoscale model, Quarterly Journal of the Royal Meteorological Society, 132(618), 1509–1526, 2006.
Kyle G. Pressel, Colleen M. Kaul, Tapio Schneider, Zhihong Tan, Siddhartha Mishra, Large-eddy simulation in an anelastic framework with closed water and entropy balances, Journal of Advances in Modeling Earth Systems, 7(3), 1425–1456, 2015.
Osborne Reynolds, On the dynamical theory of incompressible viscous fluids and the determination of the criterion, Philosophical Transactions of the Royal Society of London A, 186, 123–164, 1895.
A. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers, C. R. Akademiia U.R.S.S. (Doklady), 30, 301–305, 1941.
P. Y. Chou, On velocity correlations and the solutions of the equations of turbulent fluctuation, Quarterly of Applied Mathematics, 3, 38–54, 1945.
S. Corrsin, Turbulent flow, American Scientist, 49(3), 300–325, 1961.
A. Leonard, Energy cascade in large-eddy simulations of turbulent fluid flows, In Advances in Geophysics, editors, 237–248. Elsevier, 1975.
J. Smagorinsky, General circulation experiments with the primitive equations I. The basic experiment, Monthly Weather Review, 91(3), 99–164, 1963.
D K Lilly, On the numerical simulation of buoyant convection, Tellus, 14(2), 148–172, 1962.
D K Lilly, The representation of small-scale turbulence in numerical simulation experiments., NCAR Manuscript No. 281, 0, 1966.
J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, Journal of Fluid Mechanics, 41(2), 453–480, 1970.
Stephen B Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, 6, 35–35, 2004.
Wybe Rozema, Hyun J. Bae, Parviz Moin, Roel Verstappen, Minimum-dissipation models for large-eddy simulation, Physics of Fluids, 27(8), 085107, 2015.
Mahdi Abkar, Hyun J. Bae, Parviz Moin, Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows, Physical Review Fluids, 1(4), 2016.
Mahdi Abkar, Parviz Moin, Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model, Boundary-Layer Meteorology, 165(3), 405–419, 2017.
Odus R. Burggraf, Analytical and numerical studies of the structure of steady separated flows, Journal of Fluid Mechanics, 24, 113–151, 1966.
Charles-Henri Bruneau, Mazen Saad, The 2D lid-driven cavity problem revisited, Computers \& Fluids, 35(3), 326–348, 2006.
O. Botella, R. Peyret, Benchmark spectral results on the lid-driven cavity flow, Computers \& Fluids, 27(4), 421–433, 1998.
E. Erturk, T. C. Corke, C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, International Journal for Numerical Methods in Fluids, 48(7), 747–774, 2005.
U Ghia, K.N Ghia, C.T Shin, High-Re solutions for incompressible flow using the {Navier–Stokes} equations and a multigrid method, Journal of Computational Physics, 48(3), 387–411, 1982.
Catherine A. Vreugdenhil, John R. Taylor, Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model, Physics of Fluids, 30(8), 085104, 2018.
Enrico Deusebio, C. P. Caulfield, J. R. Taylor, The intermittency boundary in stratified plane Couette flow, Journal of Fluid Mechanics, 781, 298–329, 2015.
Qi Zhou, John R. Taylor, C. P. Caulfield, Self-similar mixing in stratified plane Couette flow for varying Prandtl number, Journal of Fluid Mechanics, 820, 86–120, 2017.
H. Kato, O. M. Phillips, On the penetration of a turbulent layer into stratified fluid, Journal of Fluid Mechanics, 37(4), 643–655, 1969.
Luke Van Roekel, Alistair J. Adcroft, Gokhan Danabasoglu, Stephen M. Griffies, Brian Kauffman, William Large, Michael Levy, Brandon G. Reichl, Todd Ringler, Martin Schmidt, The KPP boundary layer scheme for the ocean: Revisiting its formulation and benchmarking one-dimensional simulations relative to LES, Journal of Advances in Modeling Earth Systems, 10(11), 2647–2685, 2018.
Geoffrey Ingram Taylor, Albert Edward Green, Mechanism of the production of small eddies from large ones, Proceedings of the Royal Society of London. Series A, 158(895), 499–521, 1937.
S. A. Chaplygin, One case of vortex motion in fluid, Trans. Phys. Sect. Imperial Moscow Soc. Friends of Natural Sciences, 11(2), 11–14, 1903.
V.V. Meleshko, G.J.F.van Heijst, On Chaplygin's investigations of two-dimensional vortex structures in an inviscid fluid, Journal of Fluid Mechanics, 272, 157–182, 1994.
Micaiah John Muller Hill, On a spherical vortex, Philosophical Transactions of the Royal Society A, 185, 213–245, 1894.
Geoffrey Ingram Taylor, The motion of a sphere in a rotating liquid, Proceedings of the Royal Society of London. Series A, 102(715), 180–189, 1922.
M. M. Scase, H. L. Terry, Spherical vortices in rotating fluids, Journal of Fluid Mechanics, 846, R4, 2018.
Glenn R. Flierl, Melvin E. Stern, John A. Whitehead, The physical significance of modons: Laboratory experiments and general integral constraints, Dynamics of Atmospheres and Oceans, 7(4), 233–263, 1983.
G R Flierl, Isolated eddy models in geophysics, Annual Review of Fluid Mechanics, 19, 493–530, 1987.
Robert M. Kerr, Rayleigh number scaling in numerical convection, Journal of Fluid Mechanics, 310, 139–179, 1996.
Fabien Roquet, Gurvan Madec, Laurent Brodeau, J. Nycander, Defining a simplified yet “realistic” equation of state for seawater, Journal of Physical Oceanography, 45(10), 2564–2579, 2015.
F. Roquet, G. Madec, Trevor J. McDougall, Paul M. Barker, Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard, Ocean Modelling, 90, 29–43, 2015.