References

  • Abkar, M.; Bae, H. J. and Moin, P. (2016). Minimum-dissipation scalar transport model for large-eddy simulation of turbulent flows. Physical Review Fluids 1.
  • Abkar, M. and Moin, P. (2017). Large-eddy simulation of thermally stratified atmospheric boundary-layer flow using a minimum dissipation model. Boundary-Layer Meteorology 165, 405–419.
  • Arakawa, A. and Lamb, V. R. (1977). Computational design of the basic dynamical processes of the UCLA General Circulation Model. In: Methods in Computational Physics: Advances in Research and Applications, Vol. 17 (Elsevier); pp. 173–265.
  • Ascher, U.; Ruuth, S. and Wetton, B. (1995). Implicit-explicit methods for time-dependent partial differential equations. SIAM Journal on Numerical Analysis 32, 797–823.
  • Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l'Académie des sciences de l'Institut national de France (Impr. Nationale).
  • Brown, D. L.; Cortez, R. and Minion, M. L. (2001). Accurate projection methods for the incompressible Navier–Stokes equations. Journal of Computational Physics 168, 464–499.
  • Buzbee, B.; Golub, G. and Nielson, C. (1970). On direct methods for solving Poisson’s equations. SIAM Journal on Numerical Analysis 7, 627–656.
  • Chou, P. Y. (1945). On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics 3, 38–54.
  • Corrsin, S. (1961). Turbulent flow. American Scientist 49, 300–325.
  • Deardorff, J. W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. Journal of Fluid Mechanics 41, 453–480.
  • Deardorff, J. W. (1974). Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorology 7, 81–106.
  • Dellar, P. J. (2011). Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton's principle on a sphere. Journal of Fluid Mechanics 674, 174.
  • Fox-Kemper, B. and Menemenlis, D. (2008). Can large eddy simulation techniques improve mesoscale rich ocean models? Washington DC American Geophysical Union Geophysical Monograph Series 177, 319–337.
  • Frigo, M. and Johnson, S. (1998). FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181), Vol. 3 (IEEE, Seattle, WA, USA); pp. 1381–1384.
  • Frigo, M. and Johnson, S. (2005). The design and implementation of FFTW3. Proceedings of the IEEE 93, 216–231.
  • Harlow, F. H. and Welch, J. E. (1965). Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 2182–89.
  • Hockney, R. W. (1965). A fast direct solution of Poisson's equation using Fourier analysis. Journal of the ACM 12, 95–113.
  • Hockney, R. W. (1969). The potential calculation and some applications. In: Methods of Computational Physics, Vol. 9, edited by Adler, B.; Fernback, S. and Rotenberg, M. (Academic Press, New York and London); pp. 136–211.
  • Kolmogorov, A. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds' numbers. C. R. Akademiia U.R.S.S. (Doklady) 30, 301–305.
  • Kundu, P. K.; Cohen, I. M. and Dowling, D. R. (2015). Fluid mechanics. 6 Edition (Academic Press).
  • Le, H. and Moin, P. (1991). An improvement of fractional step methods for the incompressible Navier–Stokes equations. Journal of Computational Physics 92, 369–379.
  • Leith, C. E. (1968). Diffusion approximation for two-dimensional turbulence. The Physics of Fluids 11, 671–672.
  • Leonard, A. (1975). Energy cascade in large-eddy simulations of turbulent fluid flows. In: Advances in Geophysics, Vol. 18 (Elsevier); pp. 237–248.
  • Lilly, D. K. (1962). On the numerical simulation of buoyant convection. Tellus 14, 148–172.
  • Lilly, D. K. (1966). The representation of small-scale turbulence in numerical simulation experiments. NCAR Manuscript No. 281 0.
  • Makhoul, J. (1980). A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics, Speech, and Signal Processing 28, 27–34.
  • Marshall, J.; Adcroft, A.; Hill, C.; Perelman, L. and Heisey, C. (1997). A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans 102, 5753–5766.
  • Orszag, S. A.; Israeli, M. and Deville, M. O. (1986). Boundary conditions for incompressible flows. Journal of Scientific Computing 1, 75–111.
  • Patankar, S. (1980). Numerical heat transfer and fluid flow (CRC Press).
  • Pope, S. B. (2000). Turbulent flows (Cambridge University Press).
  • Press William, H.; Teukolsky Saul, A.; Vetterling William, T. and Flannery Brian, P. (1992). Numerical recipes: the art of scientific computing (Cambridge University Press, Cambridge, UK).
  • Reynolds, O. (1895). On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A 186, 123–164.
  • Roquet, F.; Madec, G.; McDougall, T. J. and Barker, P. M. (2015). Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Modelling 90, 29–43.
  • Roquet, F.; Madec, G.; Brodeau, L. and Nycander, J. (2015). Defining a simplified yet “realistic” equation of state for seawater. Journal of Physical Oceanography 45, 2564–2579.
  • Rozema, W.; Bae, H. J.; Moin, P. and Verstappen, R. (2015). Minimum-dissipation models for large-eddy simulation. Physics of Fluids 27, 085107.
  • Sagaut, P. and Meneveau, C. (2006). Large eddy simulation for incompressible flows: An introduction. Scientific Computation (Springer).
  • Sani, R. L.; Gresho, P. M.; Lee, R. L. and Griffiths, D. F. (1981). The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier–Stokes equations: Part 1. International Journal for Numerical Methods in Fluids 1, 17–43.
  • Schumann, U. and Sweet, R. A. (1988). Fast Fourier transforms for direct solution of Poisson's equation with staggered boundary conditions. Journal of Computational Physics 75, 123–137.
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations I. The basic experiment. Monthly Weather Review 91, 99–164.
  • Smagorinsky, J. (1958). On the numerical integration of the primitive equations of motion for baroclinic flow in a closed region. Monthly Weather Review 86, 457–466.
  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly weather review 91, 99–164.
  • Swarztrauber, P. N. (1977). The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Review 19, 490–501.
  • Temperton, C. (1979). Direct methods for the solution of the discrete Poisson equation: Some comparisons. Journal of Computational Physics 31, 1–20.
  • Temperton, C. (1980). On the FACR$(\ell)$ algorithm for the discrete Poisson equation. Journal of Computational Physics 34, 314–329.
  • Verstappen, R. (2018). How much eddy dissipation is needed to counterbalance the nonlinear production of small, unresolved scales in a large-eddy simulation of turbulence? Computers & Fluids 176, 276–284.
  • Vreugdenhil, C. A. and Taylor, J. R. (2018). Large-eddy simulations of stratified plane Couette flow using the anisotropic minimum-dissipation model. Physics of Fluids 30, 085104.